CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS

Similar documents
Almost unbiased exponential estimator for the finite population mean

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Almost Unbiased Exponential Estimator for the Finite Population Mean

Series of New Information Divergences, Properties and Corresponding Series of Metric Spaces

MECE 3320 Measurements & Instrumentation. Static and Dynamic Characteristics of Signals

Improvement of the Reliability of a Series-Parallel System Subject to Modified Weibull Distribution with Fuzzy Parameters

Chap 2: Reliability and Availability Models

ISSN No. (Print) :

Control Systems (Lecture note #6)

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

Suzan Mahmoud Mohammed Faculty of science, Helwan University

Reliability analysis of time - dependent stress - strength system when the number of cycles follows binomial distribution

Survival Analysis for Randomized Clinical Trials II Cox Regression. Ziad Taib Biostatistics AstraZeneca February 26, 2008

Unbalanced Panel Data Models

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year

Algorithms to Solve Singularly Perturbed Volterra Integral Equations

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

3.4 Properties of the Stress Tensor

Delay-Dependent State Estimation for Time Delay Systems

Introduction to logistic regression

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Reliability of time dependent stress-strength system for various distributions

IMPUTATION USING REGRESSION ESTIMATORS FOR ESTIMATING POPULATION MEAN IN TWO-PHASE SAMPLING

Variable Satellite Usage in GPS Receivers

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder

International Journal of Pure and Applied Sciences and Technology

Lecture 12: Introduction to nonlinear optics II.

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Extinction risk depends strongly on factors contributing to stochasticity

Inference on Curved Poisson Distribution Using its Statistical Curvature

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

CHAPTER 7. X and 2 = X

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data

Numerical Method: Finite difference scheme

Mellin Transform Method for the Valuation of the American Power Put Option with Non-Dividend and Dividend Yields

Consider a system of 2 simultaneous first order linear equations

A NOVEL DIFFERENCE EQUATION REPRESENTATION FOR AUTOREGRESSIVE TIME SERIES

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

ASYMPTOTIC BEHAVIOR OF FINITE-TIME RUIN PROBABILITY IN A BY-CLAIM RISK MODEL WITH CONSTANT INTEREST RATE

Chapter 4. Continuous Time Markov Chains. Babita Goyal

Akpan s Algorithm to Determine State Transition Matrix and Solution to Differential Equations with Mixed Initial and Boundary Conditions

Continous system: differential equations

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Asymptotic Behavior of Finite-Time Ruin Probability in a By-Claim Risk Model with Constant Interest Rate

APPENDIX: STATISTICAL TOOLS

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

NHPP and S-Shaped Models for Testing the Software Failure Process

1 Solution to Problem 6.40

The Linear Regression Of Weighted Segments

1973 AP Calculus BC: Section I

Chapter 6. pn-junction diode: I-V characteristics

The Variance-Covariance Matrix

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data

Introduction to logistic regression

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

Chapter 8. Simple Linear Regression

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

System-reliability-based design and topology optimization of structures under constraints on first-passage probability

Exponentiated Pareto Distribution: Different Method of Estimations

Modeling of stock indices with HMM-SV models

STRUCTURAL FAULT DETECTION OF BRIDGES BASED ON LINEAR SYSTEM PARAMETER AND MTS METHOD

Introduction to Laplace Transforms October 25, 2017

A Stochastic Approximation Iterative Least Squares Estimation Procedure

RELIABILITY STOCHASTIC MODELING FOR REPAIRABLE PHYSICAL ASSETS. CASE STUDY APPLIED TO THE CHILEAN MINING

(1) Cov(, ) E[( E( ))( E( ))]

Lecture 1: Empirical economic relations

EMPIRICAL STUDY IN FINITE CORRELATION COEFFICIENT IN TWO PHASE ESTIMATION

The Poisson Process Properties of the Poisson Process

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

(Reference: sections in Silberberg 5 th ed.)

Multi-fluid magnetohydrodynamics in the solar atmosphere

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Some Properties of Exponentiated Weibull-Generalized Exponential Distribution

Estimation Theory. Chapter 4

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Computational Simulations and Experiments on Vibration Control of a Flexible Two-link Manipulator Using a Piezoelectric Actuator

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Chain DOUBLE PITCH TYPE RS TYPE RS POLY-STEEL TYPE

Two-Dimensional Quantum Harmonic Oscillator

Fourier Series: main points

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

innovations shocks white noise

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

signal amplification; design of digital logic; memory circuits

Response of LTI Systems to Complex Exponentials

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

Classification. Linear Classification. What is a Linear Disciminant? Representing Classes. Decision Boundaries. What can be expressed?

SOME IMPUTATION METHODS IN DOUBLE SAMPLING SCHEME FOR ESTIMATION OF POPULATION MEAN

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach

Odd Generalized Exponential Flexible Weibull Extension Distribution

Computing OWA weights as relevance factors

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

14. Poisson Processes

Transcription:

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS 3. INTRODUCTION Th Ivrs Expoal dsrbuo was roducd by Kllr ad Kamah (98) ad has b sudd ad dscussd as a lfm modl. If a radom varabl X has a oal dsrbuo, h varabl = wll hav a Ivrs oal (IE) dsrbuo. A radom varabl X s sad o hav a Ivrs Expoal dsrbuo wh paramr f s pdf ad cdf ar gv rspcvly by; f ( x ) =, 0, > 0 x (3..) x x F ( x ) = ; x 0, > 0 (3..) x L, Rlably ad hazard fuco of IE dsrbuo ar gv by, R ( ; ) = F ( ) = ; 0, > 0 (3..3) Ad, Hazard ra, f () () h =, quvally w ca wr, R () ( ; ) h = ; 0, > 0 (3..4) Th oal dsrbuo s mos wdly usd dsrbuo for lfm daa aalyss, bcaus of s smplcy ad mahmacal fasbly. Howvr, ral world, w rarly com across h grg sysms whch hav cosa hazard ra hroughou hr lf durao. Thrfor, sms praccal o assum hazard ra as a fuco of m, whch ld o h dvlopm of alrav modl for lfm daa aalyss. A umbr of 4

lfm modls (lk Wbull, gamma, gralzd oal c.) hav b proposd o modl lf m daa ha hav mooocally crasg or dcrasg hazard ra fuco, hough, o-mooocy of h hazard ra has also b obsrvd may suao. For xampl, h cours of h sudy of moraly assocad wh som of h dsass, h hazard ra ally crass wh m ad rachs afr a pak afr som f prod of ms ad h dcl slowly, s, Sgh, al. (0). I vw of hs, Ivrd oal dsrbuo (IED) has b dscussd as a lf m modl by L, al. (989) dal. Thy obad Maxmum Lklhood smas (MLE), cofdc lms ad uformly mmum varac ubasd smaors for h paramrs ad rlably fuco of IED wh compl sampl. Dy (007) smad h paramr of IED by assumg h paramr volvd h modl as a radom varabl (r.v.). Prakash (009) dscussd h proprs of h Bays smaor, Shrkag smaor ad mmax smaor of h paramr. H also prsd h moms of h lowr rcord valu ad h smao of h paramr, basd o a srs of obsrvd rcord valus by h maxmum lklhood ad mom mhods. Rcly, Sgh, al. (0) proposd Bays smaors of h paramr ad rlably fuco for h sam udr h gral ropy loss fuco for compl, Typ-I ad Typ-II csord sampls. Th rmag scos go as follows. I Sco 3., w brfly dscuss h MLE's ad hr mplmaos. I Scos 3.3 o 3.6 w dscuss ohr mhods. Smulao rsuls ad dscussos ar provdd Sco 3.7. Comparsos of dffr mhods usg graph, ral lf applcao ad coclusos ar provdd scos 3.8, 3.9 ad 3.0. 3. MAXIMUM LIKELIHOOD ESTIMATORS I hs sco h maxmum lklhood smaors of IED () ar cosdrd, whr s ukow. If x, x... x s a radom sampl from IED () h h lklhood fuco, L(), s gv by, L = ( ; x, x,... x ) = f ( x, x,... x θ) = f ( x θ) θ (3..) 5

log L = L ( ) = = x = x = (3..) log L = L( ) = l( ) l x (3..3) x O dffrag (3..3) wh rspc o ad quag o zro, Th ormal quao bcoms: logl = = = 0 x (3..4) Afr solvg (3..4), w obad h sma of as, ˆ = (3..5) = x Dffra (3..4) wh rspc o, w hav, log L = Varac of ˆ ca b obad from, V ( ˆ ) = = (3..6) log L E Thrfor, V ( ˆ ) aas h Cramr-Rao lowr boud (= MLE ) O ca g Maxmum Lklhood Esma by usg xsv smulao chqu ad ad roo ma squar rror of Maxmum Lklhood Esma, usg (3..5) ad (3..6). 3.3 ESTIMATION OF RELIABILITY I sascs, rlably s a vry mpora cocp ha drms h prcso of masurms. Sascal rlably drms whhr or o h rm s rproducbl. Hr, R ( ) = F ( ) = (3.3.) 6

Dffra (3.3.) wh rspc o, w hav R () = Varac of sma of rlably fuco, R() ˆ ca b obad from, ( R () ˆ ) = R ( ˆ ) V ( ) V ( ˆ ) Now, Subsug h valus of R () ˆ hav, ad V ( ˆ ) (3.3.) (3.3.3), from (3..6) ad (3.3.) (3.3.3), w 4 ( () ˆ V R ) = 4 (3.3.4) O ca g sma of rlably ad roo ma squar rror of rlably by usg xsv smulao chqu, usg (3.3.) ad (3.3.4). 3.4 ESTIMATION OF HAZARD RATE Th hazard ra fuco h(), also kow as h forc of moraly or h falur ra, s dfd as h rao of h dsy fuco ad h survval fuco. Tha s, () () f Hazard ra, h () = (3.4.) R O pug h valu of () f ad R (), w hav 7

8 = h ) ( (3.4.) Dffra (3.4.) wh rspc o, w g () ( ) 3 0 + = h (3.4.3) () 3 3 4. + = h (3.4.4) Fally w g, () h as () 4 = h (3.4.5) Varac of sma of hazard ra, () h ˆ ca b obad from, () ( ) ( ) ( ) ( ) ˆ ˆ ' ˆ V h h V = (3.4.6) Now, Subsug h valus of () h ˆ ' ad ( ) ˆ V, from (3.4.5) ad (3..6) rspcvly (3.4.6), () ( ) h V s obad as, () ( ) h V 4 8. = (3.4.7)

O ca g sma of hazard ra ad roo ma squar rror of hazard ra by usg xsv smulao chqu usg (3.4.) ad (3.4.7). 3.5 ESTIMATORS BASED ON PERCENTILES If h daa coms from a dsrbuo fuco whch has a closd form, h s qu aural o sma h ukow paramrs by fg a sragh l o h horcal pos obad from h dsrbuo fuco ad h sampl prcl pos. Ths mhod was orgally lord by Kao (958, 959) ad has b usd qu succssfully for Wbull dsrbuo ad for h gralzd oal dsrbuo [s, Murhy al. (004) ad Gupa ad Kudu (00)]. I cas of a IE dsrbuo, s possbl o us h sam cocp o oba h smaor of basd o h prcls, bcaus of h srucur of s dsrbuo fuco. Now, h dsrbuo fuco of IE dsrbuo s gv as, F ( x ; ) =, x 0, > 0 x (3.5.) Takg Log of dsrbuo fuco of IE dsrbuo, w hav l F ( x ; ) =, x 0, > 0 x (3.5.) L X () dos h h ordr sasc,.., X () < X () <... < X (). If p dos som sma of F(x () ; ), h h sma of ca b obad by mmzg, h fuco l ( ) p + = x ( ) wh rspc o. (3.5.3) Dffrag (3.5.3) wh rspc o ad quag o zro, w hav o- lar quao for x () ad s gv by, l x ( p ) + = 0 = x ( ) ( ) (3.5.4) 9

W oc ha (3.5.4) s a o-lar quao of X (). So, s possbl o us som olar rgrsso chqus o sma. W call hs smaors as prcl smaors (PCE's). Svral smaors of p ca b usd hr [s, Murhy al. (004)]. I hs sco, w maly cosdr Th prcl smaor of, say, followg o-lar quao; p =, whch s h cd valu of F(X () ; ). + ˆ PCE ca b obad as h soluo of h l( p ) + = 0 = x ( ) = ( x ( ) ) (3.5.5) I cas of IE dsrbuo, f h shap paramr s ukow, h h PCE of, say, ˆ PCE of IED ca b obad by solvg (3.5.5). O ca us Nwo-Raphso mhod o solv o-lar quao (3.5.5). Now, o ca fd prcl sma ad roo ma squar rror of paramr by usg xsv smulao chqu. 3.6 LEAST SQUARES AND WEIGHTED LEAST SQUARES ESTIMATORS I hs sco, w provd h rgrsso basd mhod smaors of h ukow paramr, whch was orgally suggsd by Swa, al. (988) o sma h paramrs of Ba dsrbuos. Th mhod ca b dscrbd as follows: Suppos Y,Y,...,Y s a radom sampl of sz from a dsrbuo fuco G(. ) ad Y () < Y () <... < Y () dos h ordr sascs of h obsrvd sampl. I s wll kow ha, [ G ( y )] [ ( )] ( + ) E () = ad V G y () =, =,, 3.,. + ( + ) ( + ) [S, Johso al. (995)]. Usg h caos ad h varacs, wo procdurs of h las squars mhods ca b usd. 30

METHOD-3.6.: LEAST SQUARES ESTIMATORS Oba h smaors by mmzg, [ G ( y )] () = + (3.6.) wh rspc o h ukow paramr. Thrfor, cas of IE dsrbuo, h las squars smaor of, say, ˆ LSE ca b obad by mmzg, = x ( ) + wh rspc o. (3.6.) Dffrag (3.6.) wh rspc o ad quag o zro, w hav o- lar quao for x () ad s gv by, x () x () + x () x (). = = = 0 + (3.6.3) I cas of IE dsrbuo, f h shap paramr s ukow, h h LSE of, say, ˆ LSE of IED ca b obad by mmzg (3.6.). O ca us Nwo-Raphso mhod o solv o-lar quao (3.6.3). Now, o ca fd las squar sma ad roo ma squar rror sma of paramr by usg xsv smulao chqu. METHOD-3.6.: WEIGHTED LEAST SQUARES ESTIMATORS Th wghd las squars smaors ca b obad by mmzg, w [ G ( y )] () = + wh rspc o h ukow paramr, whr [ G( y )] () ( + ) ( + ) ( - + ) w = = ; = v,,3...,. (3.6.4) 3

Thrfor, cas of IE dsrbuo wghd las squar smaor of, say, ˆWLSE, b obad by mmzg ca w = x + () (3.6.5) wh rspc o, Dffrag (3.6.5) wh rspc o ad quag o zro, w hav o- lar quao for x () ad s gv by, x () x() + w w. = 0 = x() = x() + (3.6.6) I cas of IE dsrbuo, f h shap paramr s ukow, h h WLSE of, say, ˆ WLSE of IED ca b obad by mmzg (3.6.5). O ca us Nwo-Raphso mhod o solv o-lar quao (3.6.6). Now, o ca fd Wghd Las squar sma ad roo ma squar rror of paramr by usg xsv smulao chqu. 3.7 NUMERICAL EXAMPLES AND DISCUSSIONS I hs sco w prs rsuls of som umrcal rms o compar h prformac of h dffr smaors proposd h 3. o 3.6 scos. W prform xsv Mo Carlo smulaos o compar h prformac of h dffr smaors, maly wh rspc o hr bass ad roo ma squard rrors (RMSE's) for dffr sampl szs ad for dffr paramr valus. No ha, w cosdr = 0, 0, 30 ad =,, 3 all cass. W compu h bass ad RMSE's of smaors ovr 000 rplcaos. W cosdr h smao of, Wh s ukow. Th h sma ad roo ma squar rror of MLE, Rlably ad hazard ra ca b obad from (3..5), (3..6), (3.3.), (3.3.4), (3.4.) ad (3.4.7) rspcvly. Smlarly, h sma ad roo ma squar rror of prcls, las squars ad wghd las squars smaors of ca b 3

obad by mmzg (3.5.3), (3.6.) ad (3.6.5) or solvg o-lar quaos (3.5.4), (3.6.3) ad (3.6.6) rspcvly, wh rspc o. Th rsuls ar rpord Tabl: 3.7., 3.7., 3.7.3. I s obsrvd from Tabl: 3.7., 3.7., 3.7.3 ha mos of h smaors usually ovr sma, xcp PCE, whch udr sma all h m. Th RMSE's ad Bass ar also qu clos o h MLE ad LSE. I h cox of compuaoal complxs, MLE, Rlably ad hazard ra s ass o compu. I dos o volv ay o-lar quao, whr as h PCE, LSE ad WLSE volv o-lar quaos ad hy d o b calculad by som rav procsss. For, Ivrs oal dsrbuo, F ( x ) =, x hrfor, x =, whch s usful smulao procdur. log F ( x ) Tabl: 3.7. Smulad valus of bass ad RMSE s of smaors of, wh N=000, =, = 5. METHODS =0 MLE PCE LSE WLSE ˆ.094 0.583 0.976 6.5 Bas ( ˆ ) 0.094-0.46-0.03 5.54 RMSE ( ˆ ) 0.3658 0.595 0.9699 0.9588 R() ˆ 0.943 0.090 0.66 0.780 Bas R() ˆ 0.03-0.07-0.05 0.598 RMSE R() ˆ 0.0560 0.090 0.07 0.645 h() ˆ 0.790 0.96 0.86 0.0680 Bas h() ˆ -0.00 0.05 0.00-0. RMSE h() ˆ 0.0066 0.0099 0.048 0.68 33

= 0 MLE PCE LSE WLSE ˆ.044 0.6.09.8 Bas ( ˆ ) 0.044-0.387 0.09.84 RMSE ( ˆ ) 0.394 0.545.3589 6.75 R() ˆ 0.876 0.56 0.67 0.733 Bas R() ˆ 0.006-0.065-0.04 0.55 RMSE R() ˆ 0.038 0.094 0.7 0.598 h() ˆ 0.798 0.00 0.8 0.089 Bas h() ˆ -0.0008 0.039 0.0006-0.098 RMSE h() ˆ 0.0044 0.003 0.084 0.34 = 30 MLE PCE LSE WLSE ˆ.07 0.77.093 6.30 Bas ( ˆ ) 0.07-0.8 0.093 5.30 RMSE ( ˆ ) 0.908 0.5943.7005 9.79 R() ˆ 0.85 0.356 0.693 0.80 Bas R() ˆ 0.003-0.045-0.0 0.639 RMSE R() ˆ 0.03067 0.09 0.955 0.6795 h() ˆ 0.80 0.69 0.806 0.0583 Bas h() ˆ -0.0005 0.08 0-0. RMSE h() ˆ 0.0035 0.03 0.05 0.340 34

Tabl: 3.7. Smulad valus of bass ad RMSE's of smaors of, wh N =000, =, = 5. METHODS = 0 MLE PCE LSE WLSE ˆ.88.3.655 3.84 Bas ( ˆ ) 0.88-0.876-0.345.845 RMSE ( ˆ ) 0.73.09.090 6.988 R() ˆ 0.347 0.97 0.69 0.736 Bas R() ˆ 0.08-0.3-0.060 0.406 RMSE R() ˆ 0.0873 0.54 0.3 0.496 h() ˆ 0.59 0.78 0.69 0.075 Bas h() ˆ -0.00 0.05-0.006-0.087 RMSE h() ˆ 0.0 0.08 0.07 0.08 = 0 MLE PCE LSE WLSE ˆ.089.056.535.8 Bas ( ˆ ) 0.089-0.943-0.464 0.8 RMSE ( ˆ ) 0.478.007 0.756 4.997 R() ˆ 0.338 0.88 0.59 0.78 Bas R() ˆ 0.009-0.4-0.069 0.399 RMSE R() ˆ 0.060 0.5 0.04 0.490 35

h() ˆ 0.6 0.79 0.7 0.078 Bas h() ˆ -0.0008 0.07 0.008-0.083 RMSE h() ˆ 0.008 0.08 0.03 0.04 = 30 MLE PCE LSE WLSE ˆ.054.397.49 9.07 Bas ( ˆ ) 0.054-0.60-0.508 7.074 RMSE ( ˆ ) 0.386.0 0.70 0.98 R() ˆ 0.335 0.86 0.54 0.837 Bas R() ˆ 0.005-0.43-0.074 0.508 RMSE R() ˆ 0.049 0.5 0.098 0.453 h() ˆ 0.6 0.80 0.7 0.050 Bas h() ˆ -0.0008 0.08 0.009-0. RMSE h() ˆ 0.006 0.08 0.0 0. 36

Tabl: 3.7.3 Smulad valus of bass ad RMSE's of smaor of wh, N = 000, =3, = 5. METHODS =0 MLE PCE LSE WLSE ˆ 3.8.688.455.08 Bas ( ˆ ) 0.8 -.3-0.544 8.088 RMSE ( ˆ ).0975.53.58 4.53 R() ˆ 0.469 0.78 0.367 0.668 Bas R() ˆ 0.08-0.7-0.083 0.7 RMSE R() ˆ 0.03 0.0 0.6 0.334 h() ˆ 0.4 0.68 0.56 0.094 Bas h() ˆ -0.003 0.03 0.00-0.05 RMSE h() ˆ 0.06 0.06 0.03 0.079 = 0 MLE PCE LSE WLSE ˆ 3.33.585.303.90 Bas ( ˆ ) 0.33 -.84-0.696 9.900 RMSE ( ˆ ) 0.78.5.34 5.809 R() ˆ 0.460 0.67 0.360 0.78 Bas R() ˆ 0.009-0.83-0.090 0.77 RMSE R() ˆ 0.073 0.98 0.3 0.37 37

h() ˆ 0.44 0.70 0.57 0.080 Bas h() ˆ -0.00 0.04 0.0-0.065 RMSE h() ˆ 0.0 0.05 0.08 0.088 = 30 MLE PCE LSE WLSE ˆ 3.08.553.5 9.07 Bas ( ˆ ) 0.08 -.446-0.774 6.07 RMSE ( ˆ ) 0.574.55.057 0.98 R() ˆ 0.456 0.64 0.353 0.837 Bas R() ˆ 0.005-0.87-0.097 0.386 RMSE R() ˆ 0.060 0.97 0.4 0.453 h() ˆ 0.44 0.70 0.59 0.050 Bas h() ˆ -0.00 0.04 0.03-0.095 RMSE h() ˆ 0.008 0.05 0.07 0. REMARK: Hr, Rms s ad Bas ar obad from, 000 ˆ Bas = ˆ ad ' Rmss =. = 000 3.8 COMPARISONS OF DIFFERENT METHODS USING GRAPH For a quck udrsadg, h rlav bass ad h rlav RMSE s of h dffr smaors of h paramr s prsd fgur-3.8., 3.8., 3.8.3, 3.8.4, 3.8.5 ad 3.8.6 wh sampl szs 0, 0, 30. 38

FIGURE-3.8. ad 3.8. show h avrag rlav bass ad RMSE s of h dffr smaors of = wh dffr sampl szs 0, 0, 30. FIGURE-3.8.3 ad 3.8.4 show h avrag rlav bass ad Rms s of h dffr smaors of = wh sampl szs 0, 0, 30. FIGURE-3.8.5 ad 3.8.6 show h avrag rlav bass ad Rms s of h dffr smaors of = 3 wh sampl szs 0, 0, 30. 39

3.9 REAL LIFE APPLICATION I hs sco, a ral daa s usd as a xampl o fd h four smaors for h shap paramr of Ivrs oal dsrbuo. W apply h Kolmogorov-Smrov (K- S) sasc, ordr o vrfy whch smaor of mak h vrs oal dsrbuo fs br o hs daa. Th K-S s sasc s dscrbd dals D'Agoso ad Sphs (986). I gral, h smallr valu of K-S, h br f o h daa. Th MLE, PCE, LSE ad WLSE of ad h K-S s sascs for Ivrs oal dsrbuo wh dffr smaors of ar gv Tabl 4. Th followg daa s s prsd Aar s (987), rprss h lfms of 50 dvcs. 0., 0.,,,,,,, 3, 6, 7,,, 8, 8, 8, 8, 8,, 3, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67,7, 75, 79, 8, 8, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86. W wll us h abov daa for fg h vrs oal dsrbuo. REMARK: Accordg o h K-S s sasc, h vrs oal dsrbuo fs o h gv daa bcaus hr calculad valu of K-S s (D ) = 0.60048 ad abulad valu of K-S s (D,α ) a 5% =.36. 40

Tabl 3.9.: Th valus of smaor of ˆ, () dsrbuo usg dffr mhod of smao, for h gv daa. Mhods ˆ () h ˆ ad R() ˆ for vrs oal R ˆ h() ˆ MLE.5954 0.3635 0.58079 PCE 0.538060 0.00 0.89438 LSE 3.480 0.99077 0.00877 WLSE 7.80003 0.97564 0.008405 REMARK: Accordg o Tabl-3.9., w ca s ha MLE ad PCE prform bs for ral daa xampl whl LSE ad WLSE do o prform wll. 3.0 CONCLUSIONS Comparg all h mhods, w coclud ha for ukow paramr, h MLE prforms h bs for mos dffr valus of ad cosdrd hr. Th WLSE do o prforms wll for mos dffr valus of ad cosdrd hr. For sampl sz 0, 0, 30, for WLSE, s xrmly ovr sma whl PCE ad LSE ar udr sma for all h m. Comparg h compuaoal complxs of h dffr smaors, s obsrvd ha wh h shap paramr s ukow, w d som rav chqus o compu PCE, LSE ad WLSE. Comparg h prformac of all h smaors, s obsrvd ha as far as bass or RMSE's ar cocrd, h MLE prforms bs mos cass cosdrd hr. Compuaoally, h MLE volv oly o dmsoal opmzao whras h rs of h smaors volv wo-dmsoal opmzao. As crass, h sma of dcrass, ad s basd crass for MLE, LSE ad PCE whl sma of dcrass, s basd crass for WLSE. From Tabl-3.7., 3.7. ad 3.7.3, w coclud ha for ukow paramr, as far as rlably s cocr, rlably crass for WLSE ad dcrass for MLE, LSE, ad 4

PCE for dffr sampl sz cosdrd. As far as hazard ra s cocr, hazard ra dcrass for MLE ad WLSE whl hazard ra crass for PCE ad LSE wh dffr sampl sz cosdrd. I hs chapr w hav also compard all h mhods usg graph. Hr o ca ak h comparso of dffr mhod by bass ad RMSE s. From comparsos of graph, w coclud ha MLE prform bs whl WLSE do o prforms wll for mos dffr valus of ad cosdrd hr. For a quck udrsadg, h rlav bass ad h rlav RMSE s of h dffr smaors of h paramrs s prsd fgur- 3.8., 3.8., 3.8.3, 3.8.4,3.8.5 ad 3.8.6 wh sampl szs 0, 0 ad 30 for MLE, PCE, LSE ad WLSE. Fally w ca say ha for vrs oal dsrbuo, MLE ad PCE prform bs whl LSE ad WLSE do o prform wll for ral daa xampl cosdrd hr. 4