ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Similar documents
Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

MOS Transistor I-V Characteristics and Parasitics

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 3: CMOS Transistor Theory

MOSFET: Introduction

FIELD-EFFECT TRANSISTORS

EE 560 MOS TRANSISTOR THEORY

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 12: MOSFET Devices

Integrated Circuits & Systems

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 4: CMOS Transistor Theory

Chapter 4 Field-Effect Transistors

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Practice 3: Semiconductors

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Lecture 5: CMOS Transistor Theory

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

EE105 - Fall 2006 Microelectronic Devices and Circuits

MOS Transistor Theory

EE5311- Digital IC Design

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

ECE 342 Electronic Circuits. 3. MOS Transistors

EE105 - Fall 2005 Microelectronic Devices and Circuits

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

The Devices: MOS Transistors

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

MOS Transistor Theory

Device Models (PN Diode, MOSFET )

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

ECE 546 Lecture 10 MOS Transistors

VLSI Design The MOS Transistor

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

6.012 Electronic Devices and Circuits Spring 2005

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ECE 497 JS Lecture - 12 Device Technologies

Lecture 11: MOS Transistor

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Metal-oxide-semiconductor field effect transistors (2 lectures)

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Lecture 04 Review of MOSFET

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

EECS130 Integrated Circuit Devices

Device Models (PN Diode, MOSFET )

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Microelectronics Part 1: Main CMOS circuits design rules

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

The Devices. Jan M. Rabaey

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

MOSFET Physics: The Long Channel Approximation

6.012 Electronic Devices and Circuits

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

The Devices. Devices

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

MOS CAPACITOR AND MOSFET

ECE-305: Fall 2017 MOS Capacitors and Transistors

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Chapter 13 Small-Signal Modeling and Linear Amplification

ECE315 / ECE515 Lecture-2 Date:

Semiconductor Physics Problems 2015

Lecture 12: MOS Capacitors, transistors. Context

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

MOS Transistor Properties Review

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

MOSFET Capacitance Model

Nanoscale CMOS Design Issues

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Transcription:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1

Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level 1 Model 2

MOS Capacitor with External Bias! Three Regions of Operation: " Accumulation Region V G < 0 (Cutoff) " Depletion Region V G > 0, small (Subthreshold) " Inversion Region V G V T, large (Above Threshold) V G V T Cutoff/Subthreshold Above threshold Penn ESE 570 Spring 2018 Khanna 3

2terminal MOS Cap # 3terminal nmos VS V G V D depletion region Penn ESE 570 Spring 2018 Khanna 4

nmos = MOS cap + source/drain V SB = 0 V S V G V D Penn ESE 570 Spring 2018 Khanna 5

Review: Threshold Voltage for V SB = 0 V T =V T 0 = Φ GC Q ox C ox 2Φ F Q B0 C ox for V SB!= 0 V T = V T 0 +γ ( 2Φ F V SB 2Φ ) F γ = 2qN Aε Si C ox Penn ESE 570 Spring 2018 Khanna 6

MOSFET IV Characteristics 50 V DS S Drain current [arbitrary unit] 40 30 20 10 0 0 2 4 6 8 10 Gate to source voltage [V] V GS Penn ESE 570 Spring 2018 Khanna 7

MOSFET IV Characteristics V DS <V GS V TH S V GS V th V DS V GS V TH Penn ESE 570 Spring 2018 Khanna V DS 8

Cutoff Region V GS < 0 NMOS TRANSISTOR IN CUTOFF REGION V G V D V S Depletion region Substrate or Bulk B p Immobile acceptor ions No depletion or inversion layer under oxide, no current flow 9

Depletion Region 0 < V GS < V TH V S V G V D depletion region Depletion layer under oxide, leakage/subthreshold current flow Penn ESE 570 Spring 2018 Khanna 10

Onset of Inversion Region V GS = V T0n + δ V DS = 0 V G V D Q I Q B0 Depletion region, and thin inversion layer (aka channel) Thermal equilibrium in channel, leakagelevel current flow 11

MOSFET IV Characteristics 50 V DS S Drain current [arbitrary unit] 40 30 20 10 0 0 2 4 6 8 10 Gate to source voltage [V] V GS Penn ESE 570 Spring 2018 Khanna 12

Linear Region V GS > V T0 V DS small, V DS < V GS V T0 n + n + Channel acts like voltage controlled resistor Current flows proportional to V DS ( V DS ) As V D increases, channel depth at the drain decreases 13

Channel Voltage! Voltage varies along channel! Channel acts as a resistor " Serves as a voltage divider between V S and V D 14

Voltage along Channel! Voltage divider between V S and V D y=0 y=l V(y) y 15

Voltage along Channel! Voltage divider between V S and V D V(y) y=0 y=l Vd Vs y 16

Voltage along Channel! Voltage divider between V S and V D V(y) y=0 y=l Vd Vs y 17

Voltage along Channel! Voltage divider between V S and V D V(y) y=0 y=l Vd Vs y 18

Linear/Saturation Region Edge V GS > V T0 V DS = V GS V T0 n + n + Voltage divider along channel, until pinch off As V D increases, channel depth at the drain decreases 19

Channel Field! When voltage gap V G V y drops below V th, channel drops out of inversion " If V DS = V GS V th #V GS V DS =V G V D = V th 20

Saturation Region V GS > V T0 V DS > V GS V T0 V DS V DSAT V(x) = V DSAT n + z n + 21

Channel Field! When voltage gap V G V y drops below V th, drops out of inversion " What if V DS > V GS V th #V DS V GS > V th? " Upper limit on current, channel is pinched off " nmos current saturated 22

MOSFET IV Characteristics Linear Region V GS > V T0 V DS small, V DS < V GS V T0 n + z n + 23

MOSFET IV Characteristics Linear Region V GS > V T0 V DS small, V DS < V GS V T0 n + z n + V(y) Boundary Conditions: Mobile charge in inverted channel: V(y=0) = V S = 0, V(y=L) = V DS =V D Q I (y) = C ox [V GS V(y) V T0 ] 24

MOSFET IV Characteristics Linear Region z x y dr = dy W µ n Q I (y) µ n = electron mobility = cm 2 /(V sec) 25

MOSFET IV Characteristics Linear Region Q I (y) = C ox [V GS V(y) V T0 ] dr = dy W µ n Q I (y) Incremental potential drop along the channel segment with width dy dv CS dv C = dr = W µ n Q I (y) dy W µ n Q I (y) dv C = dy 26

MOSFET IV Characteristics Linear Region Q I (y) = C ox [V GS V(y) V T0 ] dr = dy W µ n Q I (y) Incremental potential drop along the channel segment with width dy dv CS dv C = dr = W µ n Q I (y) dy W µ n Q I (y) dv C = dy Integrate along the channel: V(y=0) = V S = 0, V(y=L) = V DS L dy = W µ n Q I ( y) dv C 0 V DS L =W µ n C ox 0 V DS 0 (V GS V C V T 0 ) dv C W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 27

MOSFET IV Characteristics Linear Region W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ( ' k ' = µ n C ox k = k ' W L = k ' 2 W L 2(V GS V T 0 )V DS V 2 DS ( ) = k ( 2 2(V V )V V 2 GS T 0 DS DS ) 28

MOSFET IV Characteristics! Example: For an nmos transistor with μ n = 600cm 2 /Vsec, C ox = 7x10 8 F/cm 2, W = 20μm, L = 2 μm, V T0 = 1V, plot the relationship between and V DS, V GS. 29

MOSFET IV Characteristics! Example: For an nmos transistor with μ n = 600cm 2 /Vsec, C ox = 7x10 8 F/cm 2, W = 20μm, L = 2 μm, V T0 = 1V, plot the relationship between and V DS, V GS. W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 = 0.42mA /V 2 (V GS 1.0)V DS V 2 DS 2 30

MOSFET IV Characteristics! Example: For an nmos transistor with μ n = 600cm 2 /Vsec, C ox = 7x10 8 F/cm 2, W = 20μm, L = 2 μm, V T0 = 1V, plot the relationship between and V DS, V GS. W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 = 0.42mA /V 2 (V GS 1.0)V DS V 2 DS 2 (V DS = V DSAT ) and V DSAT = V GS V T0 Assumptions: 31

MOSFET IV Characteristics W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 V DS =V DSAT =V GS V T 0 W = µ n C ox L (V V )(V V ) (V V GS T 0 )2 GS T 0 GS T 0 2 = µ n C ox 2 W L (V GS V T 0 )2 32

MOSFET IV Characteristics W = µ n C ox L (V V )V V 2 DS GS T 0 DS 2 LINEAR (V DS = V DSAT ) = (sat) SAT V DS =V DSAT =V GS V T 0 W = µ n C ox L (V V )(V V ) (V V GS T 0 )2 GS T 0 GS T 0 2 = µ n C ox 2 W L (V GS V T 0 )2 IN GENERAL (sat) 33

MOSFET IV Characteristics Saturation V DSAT V GS > V T0 V DS > V GS V T0 ΔL n + n + SAT = µ n C ox 2 W L' ( V GS V T 0 ) 2 = µ n C ox 2 W $ L& 1 ΔL % L empirically ΔL V DS V DSAT 1 ΔL L 1 λ V DS ' ) ( ( V GS V T 0 ) 2 If λ$v DS <<1, 1 ΔL L 1 λ V DS 1+ λ V DS 34

MOSFET IV Characteristics Saturation SAT = µ n C ox 2 W L' ( V GS V T 0 ) 2 = µ C n ox 2 W $ L& 1 ΔL % L emprically ΔL V DS V DSAT 1 ΔL L 1 λ V DS ' ) ( ( V GS V T 0 ) 2 If λ$v DS <<1, 1 ΔL L 1 λ V DS 1+ λ V DS = µ n C ox 2 W ( L V GS V T 0 ) 2 (1+ λ V DS ) 35

MOSFET IV Characteristics Linear Region: W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ( ' Saturation Region: = µ n C ox 2 W ( L V V GS T 0) 2 (1+ λ V DS ) λ 0 λ=0 36

MOSFET IV Characteristics Linear Region: W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ( ' Saturation Region: = µ n C ox 2 W ( L V V GS T 0) 2 (1+ λ V DS ) DISCONTINUOUS! @ V DS = V DSAT λ 0 λ=0 37

MOSFET IV Characteristics Linear Region: W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ((1+ λ V DS ) ' Saturation Region: = µ n C ox 2 W ( L V V GS T 0) 2 (1+ λ V DS ) DISCONTINUOUS! @ V DS = V DSAT λ 0 λ=0 38

MOSFET IV Characteristics Linear Region: W # = µ n C ox L (V GS V T 0 )V DS V 2 DS % $ 2 & ((1+ λ V DS ) ' Saturation Region: Level 1 model λ$v DS <<1 = µ n C ox 2 W ( L V V GS T 0) 2 (1+ λ V DS ) DISCONTINUOUS! @ V DS = V DSAT λ 0 λ=0 39

MOSFET IV Characteristics, V SB 0 V T = V T 0 +γ ( 2Φ F V SB 2Φ ) F Linear Region: W # = µ n C ox L (V GS V T (V SB ))V DS V 2 DS % $ 2 & ((1+ λ V DS ) ' Saturation Region: = µ n C ox 2 W L V GS V T (V SB ) ( ) 2 (1+ λ V DS ) = f (V GS,V DS,V SB ) 40

nmos IV Characteristics % ' ' ' = & ' ' ' ( 0 V GS V Tn Cutoff/Subthreshold µ n C ox W ( 2 L 2 ( V GS V Tn (V SB ))V DS V 2 DS )(1+ λ V DS ) V GS > V Tn,V DS < V GS V Tn Linear/Resistive µ n C ox W ( 2 L V GS V Tn (V SB )) 2 (1+ λ V DS ) V GS > V Tn,V DS V GS V Tn Saturation 41

pmos IV Characteristics % ' ' ' = & ' ' ' ( 0 V GS V Tp Cutoff/Subthreshold µ p C ox W ( 2 L 2 ( V GS V Tp (V SB ))V DS V 2 DS )(1+ λ V DS ) V GS < V Tp,V DS > V GS V Tp Linear/Resistive µ p C ox W ( 2 L V GS V Tp (V SB )) 2 (1+ λ V DS ) V GS < V Tp,V DS V GS V Tp Saturation 42

Measurement of Parameters k n,p D G B S 43

Measurement of Parameters k n,p D G B S 44

Measurement of Parameters k n,p D G B S 45

Measurement of Parameters γ D G S B => SA T 46

Measurement of Parameters λ => SAT 47

Measurement of Parameters λ => SAT 48

Measurement of Parameters λ => SAT 49

Subthreshold 50

Below Threshold! Transition from insulating to conducting is nonlinear, but not abrupt! Current does flow " But exponentially dependent on V GS 51

Below Threshold! Transition from insulating to conducting is nonlinear, but not abrupt! Current does flow " But exponentially dependent on V GS 52

Parasitic NPN BJT! We have an NPN sandwich, mobile minority carriers in the P region! This is a BJT! " Except that the base potential is here controlled through a capacitive divider, and not directly an electrode Penn ESE 570 Spring 2018 Khanna 53

Subthreshold If V GS < V th, S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( )! Current is from the parasitic NPN BJT transistor when gate is below threshold and there is no conducting channel " n is the capacitive divider between parasitic capacitances " Typically 1 < n < 1.5 n = C js + C ox C ox 54

Subthreshold If V GS < V th, S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( )! Current is from the parasitic NPN BJT transistor when gate is below threshold and there is no conducting channel " n is the capacitive divider between parasitic capacitances " Typically 1 < n < 1.5 n = C js + C ox C ox 55

Subthreshold! W/L dependence follow from resistor behavior (parallel, series) " Not shown explicitly in text S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( ) 56

Subthreshold Slope! Exponent in V GS determines how steep the turnon is " S = n kt % $ ' ln( 10) # q & " Units: V/decade " Every S Volts, S is scaled by factor of 10 S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( ) 57

Subthreshold Slope! Exponent in V GS determines how steep the turnon is " S = n kt % $ ' ln( 10) # q & " Units: V/dec " Every S Volts, S is scaled by factor of 10! n depends on parasitic capacitance divider " n=1 # S=60mV at Room Temp. (ideal) " n=1.5 # S=90mV " Single gate structure showing S=90110mV 58

S vs. V GS (Logscale) 59

S vs. V GS S (Logscale) 60

Subthreshold Slope! If S=100mV and V th =300mV, what is Ids(Vgs=300mV)/Ids(Vgs=0V)?! What if S=60mV? " S = n$ kt # q % ' ln 10 & ( ) S = I S W L e V GS V th nkt /q 1 e V DS kt /q 1+ λv DS ( ) 61

Steady State! What current flows in steady state?! What causes (and determines) the magnitude of current flow?! Which device? 62

Leakage! Call this steadystate current flow leakage! I ds,leak 63

Big Idea! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation " Pinch Off " Channel length modulation! Level 1 Model " =f (V GS, V DS, V SB ) " Empirical measured parameters: k, γ,λ 64

Admin! HW 2 due tonight! HW 3 due Thursday, 2/1 " Posted tonight after class " Gets you started with Cadence " Make sure you can setup and launch Cadence tonight or tomorrow " Don t wait until night before homework is due! Penn ESE 570 Spring 2018 Khanna 65