A Computational Viewpoint on Classical Density Functional Theory

Similar documents
Numerical Heat and Mass Transfer

Army Ants Tunneling for Classical Simulations

Appendix B. The Finite Difference Scheme

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

2.29 Numerical Fluid Mechanics

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

Formal solvers of the RT equation

Neuro-Adaptive Design - I:

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

V. Electrostatics. Lecture 25: Diffuse double layer structure

Integrals and Invariants of Euler-Lagrange Equations

Lab session: numerical simulations of sponateous polarization

Airflow and Contaminant Simulation with CONTAM

SUPPLEMENTARY INFORMATION

Electrostatic Potential from Transmembrane Currents

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

UPGRADE OF THE GSP GYROKINETIC CODE MID-YEAR PROGRESS REPORT

Tensor Smooth Length for SPH Modelling of High Speed Impact

Report on Image warping

The Finite Element Method

Module 3: Element Properties Lecture 1: Natural Coordinates

IV. Performance Optimization

PHYS 705: Classical Mechanics. Calculus of Variations II

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

Topic 5: Non-Linear Regression

Inductance Calculation for Conductors of Arbitrary Shape

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

A new Approach for Solving Linear Ordinary Differential Equations

Turbulent Flow. Turbulent Flow

Computational Astrophysics

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

On a direct solver for linear least squares problems

Canonical transformations

A Hybrid Variational Iteration Method for Blasius Equation

Introduction to Computational Fluid Dynamics

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels

Supplemental document

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG

A Cartesian-grid integrated-rbf method for viscoelastic flows

Integrals and Invariants of

risk and uncertainty assessment

An efficient algorithm for multivariate Maclaurin Newton transformation

Fourier Transform. Additive noise. Fourier Tansform. I = S + N. Noise doesn t depend on signal. We ll consider:

Numerical Transient Heat Conduction Experiment

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm

Lecture 14: Forces and Stresses

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer.

Da Meng 1,, Bin Zheng 1,, Guang Lin 1,2, and Maria L. Sushko 1, West Lafayette, IN 47907, USA.

5.68J/10.652J Feb 13, 2003 Numerical Solution to Kinetic Equations Lecture 1

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

High resolution entropy stable scheme for shallow water equations

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

STATISTICAL MECHANICS

Simulation of Hypervelocity Spacecrafts And Orbital Debris Collisions using Smoothed Particle Hydrodynamics in LS-DYNA

The particle-continuum method: an algorithmic unification of particle-in-cell and continuum methods

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

APoisson P 3 MForce Field Scheme for Particle-Based Simulations of Ionic Liquids

Computer-Aided Circuit Simulation and Verification. CSE245 Fall 2004 Professor:Chung-Kuan Cheng

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Professor Terje Haukaas University of British Columbia, Vancouver The Q4 Element

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Operating conditions of a mine fan under conditions of variable resistance

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

Modeling and Simulation of a Hexapod Machine Tool for the Dynamic Stability Analysis of Milling Processes. C. Henninger, P.

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Curve Fitting with the Least Square Method

One-sided finite-difference approximations suitable for use with Richardson extrapolation

Wilbur and Ague 4 WILBUR AND AGUE; APPENDIX DR1. Two-dimensional chemical maps as well as chemical profiles were done at 15 kv using

Interconnect Modeling

Bootstrap AMG for Markov Chain Computations

Field computation with finite element method applied for diagnosis eccentricity fault in induction machine

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

Diffusion Mass Transfer

Neuro-Adaptive Design II:

THE STURM-LIOUVILLE EIGENVALUE PROBLEM - A NUMERICAL SOLUTION USING THE CONTROL VOLUME METHOD

Implicit Integration Henyey Method

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Modeling of Electron Transport in Thin Films with Quantum and Scattering Effects

Electron-Impact Double Ionization of the H 2

arxiv: v1 [physics.flu-dyn] 16 Sep 2013

Digital Signal Processing

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 20: Noether s Theorem

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

Lecture 12: Discrete Laplacian

Lecture 5.8 Flux Vector Splitting

DECOUPLING THEORY HW2

Aerosols, Dust and High Spectral Resolution Remote Sensing

Solution of the Navier-Stokes Equations

Efficient, General Point Cloud Registration with Kernel Feature Maps

Transcription:

A Computatonal Vewpont on Classcal Densty Functonal Theory Matthew Knepley and Drk Gllespe Computaton Insttute Unversty of Chcago Department of Molecular Bology and Physology Rush Unversty Medcal Center Geometrc Modelng n Bomolecular Systems SIAM Lfe Scences 14, Charlotte, NC August 6, 2014 M. Knepley (UC) DFT LS 14 1 / 31

Outlne CDFT Intro 1 CDFT Intro 2 Model 3 Verfcaton M. Knepley (UC) DFT LS 14 3 / 31

CDFT Intro What s CDFT? A fast, accurate theoretcal tool to understand the fundamental physcs of nhomogeneous fluds M. Knepley (UC) DFT LS 14 4 / 31

CDFT Intro What s CDFT? For concentraton ρ ( x) of speces, solve mn ρ ( x) Ω[{ρ ( x)}] where Ω s the free energy. M. Knepley (UC) DFT LS 14 4 / 31

CDFT Intro What s CDFT? For concentraton ρ ( x) of speces, solve δω δρ ( x) = 0 whch are the Euler-Lagrange equatons. M. Knepley (UC) DFT LS 14 4 / 31

What s CDFT? DFT CDFT Intro Computes ensemble-averaged quanttes drectly Can have physcal resoluton n tme (µs) and space (Å) Requres an accurate Ω Requres sophstcated solver technology Can predct expermental results! For example, D. Gllespe, L. Xu, Y. Wang, and G. Messner, J. Phys. Chem. B 109, 15598, 2005 M. Knepley (UC) DFT LS 14 4 / 31

Outlne Model 1 CDFT Intro 2 Model Hard Sphere Repulson Bulk Flud Electrostatcs Reference Flud Densty Electrostatcs 3 Verfcaton M. Knepley (UC) DFT LS 14 5 / 31

Equlbrum Model ( µ bath ρ ( x) = exp µ ext ( x) µ ex ) ( x) kt where µ ex ( x) = µ HS ( x) + µ ES ( x) = µ HS ( x) + µ SC ( x) + z eφ( x) and ɛ φ( x) = e ρ ( x) M. Knepley (UC) DFT LS 14 6 / 31

Detals Model The theory and mplementaton are detaled n Knepley, Karpeev, Davdovts, Esenberg, Gllespe, An Effcent Algorthm for Classcal Densty Functonal Theory n Three Dmensons: Ionc Solutons, JCP, 2012. M. Knepley (UC) DFT LS 14 7 / 31

Outlne Model Hard Sphere Repulson 2 Model Hard Sphere Repulson Bulk Flud Electrostatcs Reference Flud Densty Electrostatcs M. Knepley (UC) DFT LS 14 8 / 31

Model Hard Spheres (Rosenfeld) Hard Sphere Repulson µ HS ( x) = kt α Φ HS n α (n α ( x ))ω α ( x x ) d 3 x where Φ HS (n α ( x )) = n 0 ln(1 n 3 ) + n 1n 2 n V 1 n V 2 1 n 3 ( n2 3 + 24π(1 n 3 ) 2 1 ) 3 n V 2 n V 2 n2 2 M. Knepley (UC) DFT LS 14 9 / 31

Hard Sphere Bass Model Hard Sphere Repulson n α ( x) = ρ ( x )ω α ( x x ) d 3 x where ω 0 ( r) = ω2 ( r) 4πR 2 ω 1 ( r) = ω2 ( r) 4πR ω 2 ( r) = δ( r R ) ω 3 ( r) = θ( r R ) ( r) = ωv 2 ( r) ω V 2 ( r) = r 4πR r δ( r R ) ω V 1 M. Knepley (UC) DFT LS 14 10 / 31

Hard Sphere Bass Model Hard Sphere Repulson All n α ntegrals may be cast as convolutons: n α ( x) = ρ ( x )ω α ( x x)d 3 x = = F 1 (F (ρ ) F (ω α )) F 1 (ˆρ ˆ ω α ) and smlarly µ HS ( x) = kt α ( ˆ F 1 Φ HS n α ˆ ω α ) M. Knepley (UC) DFT LS 14 11 / 31

Hard Sphere Bass Spectral Quadrature Model Hard Sphere Repulson There s a fly n the ontment: standard quadrature for ω α s very naccurate (O(1) errors), and destroys conservaton propertes, e.g. total mass We can use spectral quadrature for accurate evaluaton, combnng FFT of densty, ˆρ, wth analytc FT of weght functons. M. Knepley (UC) DFT LS 14 12 / 31

Hard Sphere Bass Spectral Quadrature Model Hard Sphere Repulson There s a fly n the ontment: standard quadrature for ω α s very naccurate (O(1) errors), and destroys conservaton propertes, e.g. total mass We can use spectral quadrature for accurate evaluaton, combnng FFT of densty, ˆρ, wth analytc FT of weght functons. M. Knepley (UC) DFT LS 14 12 / 31

Hard Sphere Bass Spectral Quadrature Model Hard Sphere Repulson ˆω 0 ( k) = ˆω2 ( k) 4πR 2 ˆω 2 ( k) = 4πR sn(r k ) k ˆω V 1 ˆω 1 ( k) = ˆω2 ( k) 4πR ( k) = ˆωV 2 ( k) ˆω V 2 ( 4πR k) = 4πı ( k 2 ˆω 3 ( k) = 4π k 3 ( sn(r k ) R k cos(r k ) sn(r k ) R k cos(r ) k ) ) M. Knepley (UC) DFT LS 14 13 / 31

Hard Sphere Bass Numercal Stablty Model Hard Sphere Repulson Recall that Φ HS (n α ( x )) =... + and note that we have analytcally n 3 2 24π(1 n 3 ) 2 n V 2 (x) 2 n 2 (x) 2 1. ( 1 n V 2 n V 2 n 2 2 However, dscretzaton errors n ρ near sharp geometrc features can produce large values for ths term, whch prevent convergence of the nonlnear solver. Thus we explctly enforce ths bound. ) 3 M. Knepley (UC) DFT LS 14 14 / 31

Outlne Model Bulk Flud Electrostatcs 2 Model Hard Sphere Repulson Bulk Flud Electrostatcs Reference Flud Densty Electrostatcs M. Knepley (UC) DFT LS 14 15 / 31

Model Bulk Flud (BF) Electrostatcs Bulk Flud Electrostatcs µ SC = µ ES,bath j x x R j ( ) c (2) j ( x, x ) + ψ j ( x, x ) ρ j ( x ) d 3 x Usng λ k = R k + 1 2Γ, where Γ s the MSA screenng parameter, we have c (2) j ( x, x ) + ψ j ( x, x ) = z z j e 2 8πɛ ( x x λ + λ j + 2λ λ j λ λ j (( ) 2 λ λ j 1 x x 2λ λ j + 2 ) ) M. Knepley (UC) DFT LS 14 16 / 31

Model Bulk Flud (BF) Electrostatcs Bulk Flud Electrostatcs µ SC = µ ES,bath j x x R j ( ) c (2) j ( x, x ) + ψ j ( x, x ) ρ j ( x ) d 3 x It s a convoluton too! M. Knepley (UC) DFT LS 14 16 / 31

Model Bulk Flud (BF) Electrostatcs Bulk Flud Electrostatcs µ SC = µ ES,bath j x x R j ( ) c (2) j ( x, x ) + ψ j ( x, x ) ρ j ( x ) d 3 x F ( ρ j ) = F ( ρj ρ bath ) = F ( ρj ) F (ρbath ) F ( ρ j ) was already calculated F (ρ bath ) s constant ( ( F x, x ) ( + ψ j x, x )) s constant c (2) j so we only calculate the nverse transform on each teraton. M. Knepley (UC) DFT LS 14 16 / 31

Model Bulk Flud (BF) Electrostatcs Bulk Flud Electrostatcs µ SC = µ ES,bath j x x R j ( ) c (2) j ( x, x ) + ψ j ( x, x ) ρ j ( x ) d 3 x FFT s also naccurate! M. Knepley (UC) DFT LS 14 16 / 31

Model Bulk Flud (BF) Electrostatcs Bulk Flud Electrostatcs µ SC = µ ES,bath j x x R j ( ) c (2) j ( x, x ) + ψ j ( x, x ) ρ j ( x ) d 3 x ĉ (2) j + ˆψ j = z ( z j e 2 1 ɛ I 1 λ (( ) 2 ) ) + λ j λ λ j I 0 + + 2 I 1 k 2λ λ j λ λ j 2λ λ j where I 1 = 1 k ( 1 cos( ) k R) I 0 = R k cos( k R) + 1 k 2 sn( k R) I 1 = R2 k cos( k R) + 2 R k 2 sn( k R) 2 k 3 ( 1 cos( k R) M. Knepley (UC) DFT LS 14 16 / 31 )

Outlne Model Reference Flud Densty Electrostatcs 2 Model Hard Sphere Repulson Bulk Flud Electrostatcs Reference Flud Densty Electrostatcs M. Knepley (UC) DFT LS 14 17 / 31

Model Reference Flud Densty Electrostatcs Reference Flud Densty (RFD) Electrostatcs Expand around ρ ref ( x ), an nhomogeneous reference densty profle: [{ ( ρk y )}] µ SC µ SC kt kt 2,j c (1) c (2) j [{ ( ρ ref k y )}] [{ ρ ref k ( y )} ; x ] ρ ( x ) d 3 x [{ ( ρ ref k y )} ; x, x ] ( ρ x ) ( ρ j x ) d 3 x d 3 x wth ( ρ x ) ( = ρ x ) ρ ref ( x ) M. Knepley (UC) DFT LS 14 18 / 31

Model Reference Flud Densty Electrostatcs Reference Flud Densty (RFD) Electrostatcs ρ ref [{ ( ρk x )} ; x ] = 3 4πR 3 SC ( x x ) α ( x ) ( ρ x ) d 3 x x R SC( x) Choose α so that the reference densty s charge neutral, and has the same onc strength as ρ Ths can model gradent flow M. Knepley (UC) DFT LS 14 19 / 31

Model Reference Flud Densty Electrostatcs Reference Flud Densty (RFD) Electrostatcs ρ ref [{ ( ρk x )} ; x ] = 3 4πR 3 SC ( x x ) α ( x ) ( ρ x ) d 3 x x R SC( x) Choose α so that the reference densty s charge neutral, and has the same onc strength as ρ Ths can model gradent flow M. Knepley (UC) DFT LS 14 19 / 31

Model Reference Flud Densty Electrostatcs Reference Flud Densty (RFD) Electrostatcs ρ ref [{ ( ρk x )} ; x ] = 3 4πR 3 SC ( x x ) α ( x ) ( ρ x ) d 3 x x R SC( x) Choose α so that the reference densty s charge neutral, and has the same onc strength as ρ Ths can model gradent flow M. Knepley (UC) DFT LS 14 19 / 31

Model Reference Flud Densty Electrostatcs Reference Flud Densty (RFD) Electrostatcs We can rewrte ths expresson as an averagng operaton: ρ ref ( x) = ρ( x ) θ ( x x R SC ( x) ) 4π 3 R3 SC ( dx x) where R SC ( x) = We close the system usng ρ ( x)r ρ ( x) + 1 2Γ( x) Γ SC [ρ] ( x) = Γ MSA [ ρ ref (ρ) ] ( x). M. Knepley (UC) DFT LS 14 20 / 31

Model Reference Flud Densty Electrostatcs Reference Flud Densty (RFD) Electrostatcs We can rewrte ths expresson as an averagng operaton: ρ ref ( x) = ρ( x ) θ ( x x R SC ( x) ) 4π 3 R3 SC ( dx x) where R SC ( x) = We close the system usng ρ ( x)r ρ ( x) + 1 2Γ( x) Γ SC [ρ] ( x) = Γ MSA [ ρ ref (ρ) ] ( x). M. Knepley (UC) DFT LS 14 20 / 31

Outlne Verfcaton 1 CDFT Intro 2 Model 3 Verfcaton M. Knepley (UC) DFT LS 14 21 / 31

Consstency checks Verfcaton Check n α of constant densty aganst analytcs Check that n 3 s the combned volume fracton Check that wall soluton has only 1D varaton M. Knepley (UC) DFT LS 14 22 / 31

Verfcaton Sum Rule Verfcaton Hard Spheres βp HS bath = ρ (R ) where P HS bath = 6kT π ( ) ξ 0 + 3ξ 1ξ 2 2 + 3ξ3 2 3 usng auxlary varables ξ n = π 6 = 1 ξ 3 j ρ bath j σ n j n {0,..., 3} M. Knepley (UC) DFT LS 14 23 / 31

Verfcaton Sum Rule Verfcaton Hard Spheres Relatve accuracy and Smulaton tme for R = 0.1nm M. Knepley (UC) DFT LS 14 24 / 31

Verfcaton Sum Rule Verfcaton Hard Spheres Volume fracton ranges from 10 5 to 0.4 (very dffcult for MC/MD) M. Knepley (UC) DFT LS 14 24 / 31

Verfcaton Ionc Flud Verfcaton Charged Hard Spheres R caton R anon 0.1nm 0.2125nm 1M 2 2 6 nm 3 and perodc Concentraton Doman Uncharged hard wall z = 0 Grd 21 21 161 M. Knepley (UC) DFT LS 14 25 / 31

Verfcaton Ionc Flud Verfcaton Charged Hard Spheres R caton R anon 0.1nm 0.2125nm 1M 2 2 6 nm 3 and perodc Concentraton Doman Uncharged hard wall z = 0 Grd 21 21 161 M. Knepley (UC) DFT LS 14 25 / 31

Verfcaton Ionc Flud Verfcaton Charged Hard Spheres Caton Concentratons for 1M concentraton M. Knepley (UC) DFT LS 14 26 / 31

Verfcaton Ionc Flud Verfcaton Charged Hard Spheres Anon Concentratons for 1M concentraton M. Knepley (UC) DFT LS 14 27 / 31

Verfcaton Ionc Flud Verfcaton Charged Hard Spheres Mean Electrostatc Potental for 1M concentraton M. Knepley (UC) DFT LS 14 28 / 31

Verfcaton Ionc Flud Verfcaton Charged Hard Spheres These results were frst reported n 1D n Densty functonal theory of the electrcal double layer: the RFD functonal, J. Phys.: Condens. Matter 17, 6609, 2005. M. Knepley (UC) DFT LS 14 29 / 31

Man Ponts Verfcaton Real Space vs. Fourer Space O(N 2 ) vs. O(N lg N) Accurate quadrature only avalable n Fourer space Electrostatcs Bulk Flud (BF) model can be qualtatvely wrong Reference Flud Densty (RFD) model demands complex algorthm Solver convergence Pcard was more robust Newton rarely entered the quadratc regme Stll no multlevel alternatve (nterpolaton?) M. Knepley (UC) DFT LS 14 30 / 31

Man Ponts Verfcaton Real Space vs. Fourer Space O(N 2 ) vs. O(N lg N) Accurate quadrature only avalable n Fourer space Electrostatcs Bulk Flud (BF) model can be qualtatvely wrong Reference Flud Densty (RFD) model demands complex algorthm Solver convergence Pcard was more robust Newton rarely entered the quadratc regme Stll no multlevel alternatve (nterpolaton?) M. Knepley (UC) DFT LS 14 30 / 31

Man Ponts Verfcaton Real Space vs. Fourer Space O(N 2 ) vs. O(N lg N) Accurate quadrature only avalable n Fourer space Electrostatcs Bulk Flud (BF) model can be qualtatvely wrong Reference Flud Densty (RFD) model demands complex algorthm Solver convergence Pcard was more robust Newton rarely entered the quadratc regme Stll no multlevel alternatve (nterpolaton?) M. Knepley (UC) DFT LS 14 30 / 31

Concluson Verfcaton The theory and mplementaton are detaled n An Effcent Algorthm for Classcal Densty Functonal Theory n Three Dmensons: Ionc Solutons, JCP, 2012. M. Knepley (UC) DFT LS 14 31 / 31

Concluson Verfcaton The theory and mplementaton are detaled n An Effcent Algorthm for Classcal Densty Functonal Theory n Three Dmensons: Ionc Solutons, JCP, 2012. M. Knepley (UC) DFT LS 14 31 / 31