Oliver Lomax Matthew Bates & Anthony Whitworth 6th September 2018 The Wonders of Star Formation

Similar documents
The Structure of Young Stellar Clusters!

T Tauri Phase of Young Brown Dwarfs

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009

Accretion disks in the sub-stellar regime

Research Archive. DOI: /mnras/stv1223. Document Version: This is the Published Version.

Physical parameter determinations of young Ms

arxiv: v1 [astro-ph.ga] 1 Jun 2015

N-body Dynamics in Stellar Clusters Embedded in Gas

OBSERVATIONAL CONSTRAINTS on the FORMATION of VERY LOW MASS STARS & BROWN DWARFS

Limits on the primordial stellar multiplicity

Star formation in nearby young clusters! Catarina Alves de Oliveira!

Gravitational fragmentation of discs can form stars with masses

Observa6ons of Brown Dwarfs

Revealing and Understanding the Low- mass End of the Stellar IMF. K. L. Luhman (Penn State)

Revealing and understanding the low-mass end of the IMF. Low-mass part of the Initial Mass Function Star, brown dwarf formation. G.

Statistical Analyses of Data Cubes

Dynamical evolution of star-forming regions

arxiv:astro-ph/ Dec 1999

Anomalous Spectral Types and Intrinsic Colors of Young Stars

Implications of protostellar disk fragmentation

The Formation of Brown Dwarfs: Observations

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter

ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel

The dust temperatures of the pre-stellar cores in the ρ Oph main cloud and in other star-forming regions: consequences for the core mass function

Hierarchical merged Star clusters surviving infant mortality

Intracluster Age Gradients And Disk Longevities In Numerous MYStIX And SFiNCs Young Stellar Clusters

Star Cluster Formation

The Formation of Brown Dwarfs: Observations

arxiv:astro-ph/ v1 29 Oct 2003

A Search for Pulsation in Very Low-mass Stars and Brown Dwarfs

η Chamaeleontis: abnormal initial mass function

Part III: Circumstellar Properties of Intermediate-Age PMS Stars

An Introduction to Nonlinear Principal Component Analysis

The Fate of Discs in Dense Star Clusters

Strong accretion on a deuterium-burning brown dwarf

Brown dwarf & star formation and the bottom of the IMF: a critical look

Data Mining. 3.6 Regression Analysis. Fall Instructor: Dr. Masoud Yaghini. Numeric Prediction

Holdout and Cross-Validation Methods Overfitting Avoidance

arxiv: v1 [astro-ph.co] 21 Jul 2010

DISTANCES AND KINEMATICS OF GOULD BELT STAR-FORMING REGIONS WITH GAIA DR2 RESULTS

Early Stages of (Low-Mass) Star Formation: The ALMA Promise

arxiv: v1 [astro-ph] 21 May 2007

!From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey!

Automated Classification of HETDEX Spectra. Ted von Hippel (U Texas, Siena, ERAU)

Numerical Simulations of Star Cluster Formation. Matthew Bate

The Role of Magnetic Field in Star Formation in the Disk of Milky Way Galaxy Shu-ichiro Inutsuka (Nagoya University)

Directed and Undirected Graphical Models

Universality of the IMF

Filamentary Structures in the Galactic Plane Morphology, Physical conditions and relation with star formation

Magnetic fields in the early phase of massive star formation

Fourier phase analysis in radio-interferometry

CS 590D Lecture Notes

arxiv: v1 [astro-ph.sr] 13 Jan 2017

Early Phases of Star Formation

X-ray emission and variability of young, nearby stars

How do protostars get their mass?

Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE

Young Stellar Structures in the Magellanic Clouds as Revealed by the VMC Survey

Protoplanetary discs of isolated VLMOs discovered in the IPHAS survey

Open clusters and stellar associations: recent results of the Italian community

arxiv: v1 [astro-ph.ga] 7 Oct 2011

Multisurface Proximal Support Vector Machine Classification via Generalized Eigenvalues

HERBIG HARO OBJECTS IN THE LUPUS I AND III MOLECULAR CLOUDS

arxiv: v1 [astro-ph.ga] 2 Mar 2009

arxiv: v1 [astro-ph.ga] 30 Nov 2009

approximation of the dimension. Therefore, we get the following corollary.

THE T TAURI PHASE DOWN TO NEARLY PLANETARY MASSES: ECHELLE SPECTRA OF 82 VERY LOW MASS STARS AND BROWN DWARFS

The IMF in Extreme Star-Forming Environments: Searching for Variations vs. Initial Conditions

Theory of star formation

Constraint on brown dwarf formation: radial variation of the stellar and sub- stellar mass function of IC 2391 ( and mass function of Praesepe)

arxiv: v1 [astro-ph.ga] 10 Jul 2017

The angular homogeneity scale of the Universe

A SURVEY FOR CIRCUMSTELLAR DISKS AROUND YOUNG SUBSTELLAR OBJECTS Michael C. Liu 1. Joan Najita. and Alan T. Tokunaga

The Initial Mass Function Elisa Chisari

The angular homogeneity scale of the Universe

The formation of free-floating brown dwarves and planetary-mass objects by photo-erosion of prestellar cores

Searching for Binary Y dwarfs with the Gemini GeMS Multi-Conjugate Adaptive Optics System

Radial-Basis Function Networks

arxiv: v1 [astro-ph.sr] 20 Mar 2017

arxiv:astro-ph/ v1 29 Aug 2003

Finding Increment Statistics on various types of Wavelets under 1-D Fractional Brownian Motion Synthesis

arxiv: v1 [astro-ph.ga] 24 Nov 2010

A mid-infrared study of very low mass stars and brown dwarfs in Upper Scorpius ABSTRACT

The role of the magnetic field in the formation of structure in molecular clouds

arxiv: v1 [astro-ph.sr] 4 Aug 2011

The Evolution of the Multiplicity of Embedded Protostars II: Binary Separation Distribution & Analysis 1

arxiv:astro-ph/ v1 24 Aug 2005

Belief Propagation for Traffic forecasting

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

ARE BINARY SEPARATIONS RELATED TO THEIR SYSTEM MASS?

The formation of Brown dwarf :

Integral representations in models with long memory

The Perceptron Algorithm

The formation of a star cluster: predicting the properties of stars and brown dwarfs

Detection of Unauthorized Electricity Consumption using Machine Learning

Dynamic Approaches: The Hidden Markov Model

FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE

ALMA SURVEY OF CIRCUMSTELLAR DISKS IN THE YOUNG STELLAR CLUSTER IC 348

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis

Transcription:

Machine learning quantification of cluster structure Oliver Lomax Matthew Bates & Anthony Whitworth 6th September 2018 The Wonders of Star Formation

Outline

Outline Q parameter, used to measure substructure in star clusters, is unreliable.

Outline Q parameter, used to measure substructure in star clusters, is unreliable. We have tools available to do better!

Outline Q parameter, used to measure substructure in star clusters, is unreliable. We have tools available to do better! Disclaimer: I am neither an observer or an N-body numericist!

Q parameter Q = m s m = N m P i=1 m i (N m + 1) E 1 E R PN s s i s = i=1 N s R Cartwright and Whitworth, 2004, MNRAS, 348, 589

Q parameter Q = m s m = N m P i=1 m i (N m + 1) E 1 E R PN s s i s = i=1 N s R Minimum Spanning Tree Cartwright and Whitworth, 2004, MNRAS, 348, 589

Q parameter Q = m s m = N m P i=1 m i (N m + 1) E 1 E R PN s s i s = i=1 N s R Minimum Spanning Tree Complete Graph Cartwright and Whitworth, 2004, MNRAS, 348, 589

Q parameter Q = m s m = N m P i=1 m i (N m + 1) E 1 E R PN s Radial Profile Box Fractal s = i=1 s i N s R (r) / r P (sub-cube) = 2D 2 E Q & 0.8 Q. 0.8 Cartwright and Whitworth, 2004, MNRAS, 348, 589

Q parameter Q = m s Cluster # N N m P Lupus 3 1 67 IC 348 2 350 m = i=1 m i (N m + 1) E 1 E R ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 PN s Taurus 6 335 s = i=1 s i N s R Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010) Cartwright and Whitworth, 2004, MNRAS, 348, 589

m-s plots Cluster # N Lupus 3 1 67 IC 348 2 350 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010) Cartwright, 2009, MNRAS, 400, 1427

m-s plots Cluster # N Lupus 3 1 67 IC 348 2 350 IC 348 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010) Cartwright, 2009, MNRAS, 400, 1427

m-s plots Cluster # N Lupus 3 1 67 IC 348 2 350 IC 348 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010) Cartwright, 2009, MNRAS, 400, 1427

m-s plots Cluster # N Lupus 3 1 67 IC 348 2 350 IC 348 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010) Cartwright, 2009, MNRAS, 400, 1427 Taurus

m-s plots Cluster # N Lupus 3 1 67 IC 348 2 350 IC 348 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010) Cartwright, 2009, MNRAS, 400, 1427 Taurus

m-s plots Cluster # N Lupus 3 1 67 IC 348 2 350 IC 348 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010) Cartwright, 2009, MNRAS, 400, 1427 Taurus

Stop using square models

Stop using square models

Stop using square models D=2.4 D=1.8 D=1.5 Goodwin and Whitworth, 2004, A&A, 413, 929

Stop using square models D=2.4 D=1.8 Taurus D=1.5 Goodwin and Whitworth, 2004, A&A, 413, 929

Fractional Brownian Motion A generalisation of classical Brownian motion. Used to interpret properties of molecular clouds (e.g. Stutzki et al., 1998, Elia et al., 2014). Parameterised by the Hurst index H H and a standard deviation σ. Relatively simple to generate in Fourier space: P (k) / k = E + 2H σ

Fractional Brownian Motion A generalisation of classical Brownian motion. Used to interpret properties of molecular clouds (e.g. Stutzki et al., 1998, Elia et al., 2014). Parameterised by the Hurst index H H and a standard deviation σ. Relatively simple to generate in Fourier space: P (k) / k = E + 2H σ

Q parameter is rubbish

Q parameter is rubbish

m-s plots

Machine learning m Cluster distribution is whitened, i.e. Cov(x)=I H Parameters estimated using minimum spanning tree and complete graph. Neural net method used to map edge length moments of graphs to underlying parameters. s σ M n (x) = 1 N! NX 1/n (x i µ x ) n i=1 GitHub: github.com/odlomax/clusterfrac

Parameter Estimation

Cluster # N Lupus 3 1 67 IC 348 2 350 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010)

Cluster # N Lupus 3 1 67 IC 348 2 350 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010)

Cluster # N Lupus 3 1 67 IC 348 2 350 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010)

Cluster # N Lupus 3 1 67 IC 348 2 350 ρ Oph 3 198 IC 2391 4 200 Cha I 5 234 Taurus 6 335 Comerón (2008) Lada et al. (2006); Muench et al. (2007) Bontemps et al. (2001) Barrado y Navascués et al. (2001) Luhman (2007) Luhman et al. (2010)

HANS!

HANS! Conclusions

HANS! Conclusions Q analysis of stellar structures has some serious shortcomings, mainly due to models.

HANS! Conclusions Q analysis of stellar structures has some serious shortcomings, mainly due to models. Fractional Brownian motion (FBM) provides a convenient model of star cluster morphology, related to molecular clouds.

HANS! Conclusions Q analysis of stellar structures has some serious shortcomings, mainly due to models. Fractional Brownian motion (FBM) provides a convenient model of star cluster morphology, related to molecular clouds. Machine learning techniques can be used to modernise Q analysis.

HANS! Conclusions Q analysis of stellar structures has some serious shortcomings, mainly due to models. Fractional Brownian motion (FBM) provides a convenient model of star cluster morphology, related to molecular clouds. Machine learning techniques can be used to modernise Q analysis. So far, we can classify clusters, and generate synthetic analogues. Simulations needed to better understand physical meaning of parameters.

HANS! Conclusions Q analysis of stellar structures has some serious shortcomings, mainly due to models. Fractional Brownian motion (FBM) provides a convenient model of star cluster morphology, related to molecular clouds. Machine learning techniques can be used to modernise Q analysis. So far, we can classify clusters, and generate synthetic analogues. Simulations needed to better understand physical meaning of parameters. Article: Lomax et al., 2018, MNRAS, 480, 371 arxiv: 1804.06844 GitHub: github.com/odlomax/clusterfrac