Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Similar documents
Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Journal of Inequalities in Pure and Applied Mathematics

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

New general integral inequalities for quasiconvex functions

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

Improvement of Ostrowski Integral Type Inequalities with Application

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

Journal of Inequalities in Pure and Applied Mathematics

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

ON THE WEIGHTED OSTROWSKI INEQUALITY

Journal of Inequalities in Pure and Applied Mathematics

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

Journal of Inequalities in Pure and Applied Mathematics

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

S. S. Dragomir. 2, we have the inequality. b a

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

The Hadamard s inequality for quasi-convex functions via fractional integrals

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

WENJUN LIU AND QUÔ C ANH NGÔ

Improvement of Grüss and Ostrowski Type Inequalities

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

Hadamard-Type Inequalities for s Convex Functions I

arxiv: v1 [math.ca] 28 Jan 2013

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

Hermite-Hadamard type inequalities for harmonically convex functions

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

GENERALIZED ABSTRACTED MEAN VALUES

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

Integral inequalities for n times differentiable mappings

ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a

Journal of Inequalities in Pure and Applied Mathematics

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

An optimal 3-point quadrature formula of closed type and error bounds

Some new integral inequalities for n-times differentiable convex and concave functions

On some refinements of companions of Fejér s inequality via superquadratic functions

Handout I - Mathematics II

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Bulletin of the. Iranian Mathematical Society

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl:

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

New Expansion and Infinite Series

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

Entrance Exam, Real Analysis September 1, 2009 Solve exactly 6 out of the 8 problems. Compute the following and justify your computation: lim

An inequality related to η-convex functions (II)

A General Dynamic Inequality of Opial Type

A basic logarithmic inequality, and the logarithmic mean

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

Several Answers to an Open Problem

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

AN UPPER BOUND ESTIMATE FOR H. ALZER S INTEGRAL INEQUALITY

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

The Regulated and Riemann Integrals

Lecture 1. Functional series. Pointwise and uniform convergence.

A NOTE ON SOME FRACTIONAL INTEGRAL INEQUALITIES VIA HADAMARD INTEGRAL. 1. Introduction. f(x)dx a

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

A Note on Feng Qi Type Integral Inequalities

Journal of Inequalities in Pure and Applied Mathematics

Chapter 6. Riemann Integral

1.9 C 2 inner variations

ON THE C-INTEGRAL BENEDETTO BONGIORNO

HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE (α, m)-convex

FUNCTIONS OF α-slow INCREASE

Properties of the Riemann Integral

Math& 152 Section Integration by Parts

Definite integral. Mathematics FRDIS MENDELU

The presentation of a new type of quantum calculus

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

The Hadamard s Inequality for s-convex Function

Math 554 Integration

Transcription:

Generl Mthemtics Vol. 6, No. (28), 7 97 Ostrowski Grüss Čebyšev type inequlities for functions whose modulus of second derivtives re convex Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Abstrct In this pper, we estblish Ostrowski Grüss Čebyšev type inequlities involving functions whose derivtives re bounded nd whose modulus of second derivtives re convex. 2 Mthemtics Subject Clssifiction: 26D5, 65D Key words nd phrses: Ostrowski Grüss-Čebyšev inequlities, modulus of second derivtive, convex function. Introduction In 98, A. M. Ostrowski proved the following clssicl inequlity 7]: Theorem. Let f :,b] R be continous on,b] nd diffrentible on (,b), whose first derivtive f : (,b) R is bounded on (,b), i.e., f (x) M <. Then, () f (x) f (t)dt b 4 for ll x,b], where M is constnt. ( x b 2 (b ) 2 Received 6 July, 27 Accepted for publiction (in revised form) 5 Februry, 28 7 ) 2 ] (b )M,

74 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn For two bsolutely continuous functions f,g :,b] R, consider the functionl (2) T (f,g) b b provided, the involved integrls exist. f (x)g (x)dx f (x)dx b g (x) dx, In 882, P. L. Čebyšev proved tht 6], if f,g L,b], then (b )2 () T (f,g) f 2 g. In 94, G. Grüss showed tht 6], (4) T (f,g) (M m) (N n), 8 provided, m, M, n, nd N re rel numbers stisfying the condition < m f (x) M <, < n g (x) N <, for ll x,b]. During the pst few yers, mny reserchers hve given considerble ttention to the bove inequlities nd vrious generliztions, extensions nd vrints of these inequlities hve ppered in the literture, see 2], nd the references cited therein. Motivted by the recent results given in, ], in the present pper, we estblish some inequlities similr to those given by Ostrowski, Grüss, Čebyšev nd Pchptte, involving functions whose derivtives re bounded nd whose modulus of second derivtives re convex. The nlysis used in the proofs is elementry nd bsed on the use of integrl identities proved in 2]. 2 Sttement of results Let I be suitble intervl of the rel line R. A function f : I R is clled convex if f(λx ( λ)y) λf(x) ( λ)f(y),

Ostrowski Grüss Čebyšev type inequlities... 75 for ll x,y I nd λ, ]. A function f : I (, ) is sid to be log-convex if f (λx ( λ)y) f(x)] λ f(y)] λ, for ll x,y I nd λ, ] (see]). We need the following identity, i.e., the identity (5): f (x) b f(t)dt (x b b 2 )f (x) b (x t) 2 ( λ)f (( λ)x λt)dλ b b 2 (b ) (b x) f(t)dt (x b 2 )f (x) (x ) λ 2 f (( λ) λx)dλ λ 2 f (( λ)b λx)dλ, dt for x,b], where f : I R is n bsolutely continuous function on,b] nd λ, ]. We use the following nottion to simplify the detils of presenttion: nd S s (f,g) f(x)g(x) 2 (x b 2 ) f(x)g (x) g(x)f (x)] b f(x) g(t)dt g(x) f(t)dt, 2 (b ) T s (f,g) S s (f,g)dx, b

76 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn nd define. s the usul Lebesgue norm on L,b], i.e., h : ess sup h(t) for h L,b]. t,b] The following theorems del with Ostrowski type inequlities involving two functions. Theorem 2. Let f :, b] R be bsolutely continous on, b].. If f, g re convex on,b] nd f,g L,b], then S s (f,g) g(x) (2 f (x) f (t) ) f(x) (2 g (x) g (t) )] ] (5) b (x 2 (b ) 2 2 (b ) 2, 2 for ll x,b]. 2. If f, g re log-convex on,b], then (6) S s (f,g) 2 (b ) g(x) f(x) x t 2 f (x) ln A A (lna) 2 dt x t 2 g (x) ln B B (lnb) 2 dt, for ll x,b], where A f (t) f (x) > nd B g (t) g (x) >. Theorem. Let f :, b] R be bsolutely continuous on, b].. If f, g re convex on,x] nd x,b], then for x,b], where S s (f,g) g(x) M(x) f(x) N(x)], 4 M(x) { (x ) (b )2 f () 2 b ] } f (x), 4 9(x b 2 )2 (b ) 2 ( ) b x f (b) b

Ostrowski Grüss Čebyšev type inequlities... 77 nd (7) N(x) { (x ) (b )2 g () 2 b ] } g (x), 4 9(x b 2 )2 (b ) 2 ( ) b x g (b) b for x,b]. 2. If f, g log-convex on,x] nd x,b], then S s (f,g) g(x) H(x) f(x) L(x)], x,b], where H(x) { (x ) (b )2 A (lna ) 2 2A ln A 2A 2 4 b (lna ) f () ( ) } b x B (lnb ) 2 2B ln B 2B 2 b (lnb ) f (b), nd (x ) L(x) (b )2 A 2 (lna 2 ) 2 2A 2 ln A 2 2A 2 2 (8) 4 b (ln A 2 ) g () ( ) ] b x B 2 (lnb 2 ) 2 2B 2 ln B 2 2B 2 2 b (lnb 2 ) g (b), with A f (x) f () >, B f (x) f (b) >, A 2 g (x) g () > nd B 2 g (x) g (b) >. The Grüss type inequlities re embodied in the following theorems. Theorem 4. Let f :, b] R be bsolutely continuous on, b].

78 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn. If f, g re convex on,b] nd f, g L,b], then (9) T s (f,g) b 2 (b ) 2 g(x) (2 f (x) f (t) ) f(x) (2 g (x) g (t) )] E(x)dx, for ll x,b], where E(x) (x ) (b x). 2. If f, g re log-convex on,b], then () T s (f,g) 2 (b ) 2 f(x) g(x) x t 2 f ln AA (x) (lna) 2 dt x t 2 g (x) ln B B (lnb) 2 dt dx, for ll x,b], where A f (t) f (x) > nd B g (t) g (x) >. Theorem 5. Let f :, b] R be bsolutely continuous on, b].. If f, g re convex on,b] nd f,g L,b], then () T s (f,g) b 48 { (x ) g(x) ( f () f (x) ) b f(x) ( g () g (x) )] g(x) ( f (b) f (x) ) ( ) } b x f(x) ( g (b) g (x) )] dx. b

Ostrowski Grüss Čebyšev type inequlities... 79 2. If f, g re log-convex on,b], then T s (f,g) b { (x ) A (lna ) 2 2A ln A 2A 2 (2) 4 b (lna ) ] g(x) f () A 2 (lna 2 ) 2 2A 2 ln A 2 2A 2 2 (ln A 2 ) f(x) g () B (lnb ) 2 2B ln B 2B 2 (ln B ) g(x) f (b) B 2 (ln B 2 ) 2 2B 2 ln B 2 2B 2 2 (lnb 2 ) ] (b x ) } f(x) g (b) dx. b The next theorem contins Čebyšev type inequlities. Theorem 6. Let f :, b] R be bsolutely continuous on, b].. If f, g re convex on,b] nd f,g L,b], then T () s (f,g) 6 (b ) 2 f (x) f 2 g (x) g ]E 2 (x)dx, for ll x,b], where E(x) (x ) (b x). 2. If f, g re log-convex on,b], then T (4) s (f,g) b (b ) f (x) g (x) x t 2 ln B B (lnb) 2 x t 2 ln A A (lna) 2 dt dt dx, for ll x,b], where A f (t) f (x) > nd B g (t) g (x) >.

8 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Proofs of Theorems Proof of Theorem 2. From the hypothesis of Theorem 2, it is esy to verify tht the following identity holds: (5) f (x) b f(t)dt (x b b 2 )f (x) b (x t) 2 ( λ)f (( λ)x λt)dλ dt. b Similrly (6) g (x) b g(t)dt (x b b 2 )g (x) b (x t) 2 ( λ)g (( λ)x λt)dλ dt, b for x,b]. Multiplying both sides of (5) nd (6) by g(x) nd f(x) respectively, dding the resulting identities nd rewriting, we hve: b f(x)g(x) g(x) f(t)dt f(x) g(t)dt 2(b ) 2 (x b 2 ) f (x)g(x) f(x)g (x)] 2 (b ) g(x) (x t) 2 ( λ)f (( λ)xλt)dλ dt f(x) (x t) 2 ( λ)g (( λ)x λt)dλ dt.

Ostrowski Grüss Čebyšev type inequlities... 8 This gives S s (f,g) 2 (b ) g(x) (7) f(x) (x t) 2 (x t) 2 ( λ)f (( λ)x λt)dλ dt ( λ)g (( λ)x λt)dλ dt, where b S s (f,g) f(x)g(x) g(x) f(t)dt f(x) g(t)dt 2(b ) 2 (x b 2 ) f (x)g(x) f(x)g (x)].. Since f, g re convex on,b], from (7), we observe tht Now S s (f,g) g(x) f(x) 2 (b ) x t 2 f (x) x t 2 g (x) ( λ) 2 dλ nd S s (f,g) 2 (b ) f(x) ( λ) 2 dλ f (t) ( λ) 2 dλ g (t) λ ( λ)dλ. We thus hve: 6 g(x) λ ( λ)dλ dt λ ( λ)dλ dt. x t 2 (2 f (x) f (t) )dt x t 2 (2 g (x) g (t) )dt 2 (b ) sup (2 f (x) f (t) ) g(x) t,b]

82 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn sup (2 g (x) g (t) ) f(x) t,b] { 2 (b ) ] b x t 2 dt g(x) sup 2 f (x) f (t) ] t,b] } f(x) sup 2 g (x) g (t) ] t,b] Now (x ) (b x) hve: (b )2 S s (f,g) 2 2 (b ) 2 2 ] b (x 2 )2 (b ) 2 ] (x ) (b x). ] (x b 2 )2 (b ). We therefore g(x) 2 f x f (t) ] f(x) 2 g (x) g (t) ]] 2. Since f, g re log-convex on,x] nd x,b], we hve from (7): S s (f,g) 2 (b ) g(x) x t 2 ( λ) f (x) λ f (t) λ dλ dt f(x) x t 2 ( λ) g (x) λ g (t) λ dλ dt 2 (b ) f(x) g(x) x t 2 f (x) ( λ) f λ (t) f (x) dλ dt x t 2 g (x) ( λ) g λ (t) g (x) dλ dt 2 (b ) g(x) x t 2 f (x) ln A A (ln A) 2 dt

Ostrowski Grüss Čebyšev type inequlities... 8 f(x) where A f (t) f (x) nd B g (t) g (x). Proof of Theorem. x t 2 g (x) ln B B (lnb) 2 dt, From the hypothesis of the Theorem, the following identity 5] holds: (8) f (x) b f(t)dt (x b b 2 )f (x) (x ) λ 2 f (( λ) λx) dλ 2 (b ) (b x) λ 2 f (( λ)b λx) dλ. similrly, (9) g (x) b g(t)dt (x b b 2 )g (x) (x ) λ 2 g (( λ) λx) dλ 2 (b ) (b x) λ 2 g (( λ)b λx) dλ. Multiplying both sides of (8) nd (9) by g(x) nd f(x), dding the re-

84 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn sulting identities nd rewriting, we hve: S s (f,g) ( ) 4 g(x) x (2) λ 2 f (( λ) λx) dλ b ( ) b x λ 2 f (( λ)b λx) dλ b ( ) f(x) x λ 2 g (( λ) λx) dλ b ( ) b x λ 2 g (( λ)b λx) dλ b (b )2.. Since f, g re convex on,b], from (2) we observe tht (2) S s (f,g) g(x) M(x) f(x) N(x)], 4 where M(x) (x ) b (b x) b λ 2 f (( λ) λx) dλ λ 2 f (( λ)b λx) dλ, nd N(x) (x ) b (b x) b λ 2 g (( λ) λx) dλ λ 2 g (( λ)b λx) dλ.

Ostrowski Grüss Čebyšev type inequlities... 85 Next, using the property of functions whose modulus of second derivtives re convex, we observe tht λ 2 f (( λ) λx) dλ f () λ 2 ( λ) f (x) λ dλ 2 f () 4 f (x). Similrly, λ 2 f (( λ)b λx) dλ 2 f (b) 4 f (x), lso λ 2 g (( λ) λx) dλ 2 g () 4 g (x), nd λ 2 g (( λ)b λx) dλ 2 g (b) 4 g (x). We thus hve { (x ) ( ) (b )2 b x M(x) f () f (b) 2 b b (x ) ( ) ] } b x f (x). b b Now We, therefore hve: (x ) b ( ( ) ] b x x b ) 2 b 4 9 2 (b ) 2. (22) M(x) { (x ) (b )2 f () 2 b ] } f (x). 4 9(x b 2 )2 (b ) 2 ( ) b x f (b) b

86 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Similrly, (2) N(x) { (x ) (b )2 g () 2 b ] } g (x). 4 9(x b 2 )2 (b ) 2 ( ) b x g (b) b The inequlities (2), (22) nd (2) estblish the required inequlity. 2. Since f, g re log-convex on,b], we hve from (2) S s (f,g) ( ) (b )2 4 g(x) x λ 2 f () λ f (x) λ dλ b ( ) b x λ 2 f (b) λ f (x) λ dλ b ( ) f(x) x λ 2 g () λ g (x) λ dλ b ( ) b x λ 2 g (b) λ g (x) λ dλ b ( ) ( ) (b )2 4 g(x) x f f () λ 2 λ (x) dλ b f () ( ) ( ) b x f f (b) λ 2 λ (x) dλ b f (b) ( ) ( ) f(x) x g g () λ 2 λ (x) dλ b g () ( ) ( ) b x g g (b) λ 2 λ (x) (24) dλ b g (b).

Ostrowski Grüss Čebyšev type inequlities... 87 For ny C >, we hve: λ 2 C λ dλ C (lnc)2 2C ln C 2C 2 (ln C). Also, let A f (x) f (), B f (x) f (b), A 2 g (x) g () nd B 2 g (x) g (b). We therefore hve from (24) for x,b], where S s (f,g) g(x) H(x) f(x) L(x)], (x H(x) ) 4 (b A (lna ) 2 2A ln A 2A 2 )2 b (ln A ) f () ( ) ] b x B (lnb ) 2 2B ln B 2B 2 b (ln B ) f (b), nd (x L(x) ) 4 (b A 2 (ln A 2 ) 2 2A 2 ln A 2 2A 2 2 )2 b (lna 2 ) g () ( ) ] b x B 2 (lnb 2 ) 2 2B 2 ln B 2 2B 2 2 (25) b (lnb 2 ) g (b).

88 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Proof of Theorem 4. From the proof of Theorem 2, we hve b (26) f(x)g(x) g(x) f(t)dt f(x) g(t)dt 2(b ) 2 (x b 2 ) f (x)g(x) f(x)g (x)] 2 (b ) g(x) (x t) 2 ( λ)f ( λ)x λt]dλ dt f(x) (x t) 2 ( λ)g ( λ)x λt]dλ dt. Integrting w.r.t x from to b, we get (27) T s (f,g) 2 (b ) 2 g(x) f(x) (x t) 2 (x t) 2 ( λ)f (( λ)xλt)dλ dt ( λ)g (( λ)xλt)dλ dt dx. Since f, g re convex on,b], we hve from (27) g(x) f(x) T s (f,g) x t 2 f (x) x t 2 g x 2 (b ) 2 ( λ) 2 dλ f (t) ( λ) 2 dλ g (t) λ ( λ)dλ dt λ ( λ)dλ dt dx

Ostrowski Grüss Čebyšev type inequlities... 89 where b 2 (b ) 2 g(x) f(x) 2 (b ) 2 f(x) 2 (b ) 2 f x t 2 (x) f (t) 6 ] g x t 2 (x) g (t) dt 6 dx f g(x) x t 2 (x) ess sup g x t 2 (x) ess sup ] g (t) 6 { g(x) 2 f (x) f (t) ] f(x) 2 g (x) g (t) ]}E(x)dx, x t 2 dt E(x) (x ) (b x). ] dt f (t) 6 dt dx 2. Since f, g re log-convex on,b], we hve from (26) T s (f,g) 2 (b ) 2 g(x) f(x) 2 (b ) 2 x t 2 x t 2 g(x) ] dt ( λ) f (x) λ f (t) λ dλ dt ( λ) g (x) λ g (t) λ dλ dt dx x t 2 f (x) ( λ) f λ (t) f (x) dλ dt

9 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn f(x) 2 (b ) 2 f(x) x t 2 g (x) g(x) where A f (t) f (x), B g (t) g (x). ( λ) g (t) g (x) λ dλ dt dx x t 2 f (x) ln A A (lna) 2 dt x t 2 g (x) ln B B (lnb) 2 dt dx, Proof of Theorem 5 From the proof of Theorem, we hve S s (f,g) ( ) 4 g(x) x λ 2 f (( λ) λx)dλ b ( ) b x λ 2 f (( λ)b λx)dλ b ( ) f(x) x λ 2 g (( λ) λx)dλ b ( ) b x λ 2 g (( λ)b λx)dλ b (b )2. Integrting the bove w.r.t.x from to b, we hve T s (f,g)

Ostrowski Grüss Čebyšev type inequlities... 9 (b ) 4 f(x) ( ) x g(x) b λ 2 g (( λ) λx) dλ λ 2 f (( λ) λx) dλ ( ) b x g(x) λ 2 f (( λ)b λx) dλ b f(x) λ 2 g (( λ)b λx) dλ dx.. Since f, g re convex on,b], we hve T s (f,g) b ( ) x g(x) λ 2 ( λ) f () λ f (x) ] dλ 4 b f(x) λ 2 ( λ) g () λ g (x) ] dλ ( ) b x g(x) b f(x) b 48 λ 2 ( λ) f (b) λ f (x) ] dλ λ 2 ( λ) g (b) λ g (x) ] dλ dx { (x ) g(x) ( f () f (x) ) b f(x) ( g () g (x) )] g(x) ( f (b) f (x) ) f(x) ( g (b) g (x) )] ( ) } b x dx. b

92 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn 2. Since f, g re log-convex on,x], x,b], we hve from (2) T s (f,g) b ( ) ( ) x f g (x) f () λ 2 λ (x) dλ 4 b f () f (x) g (b) λ 2 ( g (x) g () ( ) b x g (x) f (b) b f (x) g (b) λ 2 ( g (x) g (b) Using the results of Theorem, we hve ) λ dλ ( ) f λ 2 λ (x) dλ f (b) ) λ dλ dx. T s (f,g) b 4 { (x ) g(x) f () A (ln A ) 2 2A ln A 2A 2 b (lna ) ] f(x) g () A 2 (ln A 2 ) 2 2A 2 ln A 2 2A 2 2 (lna 2 ) ( ) b x g(x) f (b) B (lnb ) 2 2B ln B 2B 2 b (ln B ) ]} f(x) g (b) B 2 (ln B 2 ) 2 2B 2 ln B 2 2B 2 2 (lnb 2 ) dx.

Ostrowski Grüss Čebyšev type inequlities... 9 Proof of Theorem 6 From the hypothesis of Theorem 6, nd using the identities (5) nd (6), we hve: (28) f (x) f(t)dt (x b b 2 )f (x) g (x) g(t)dt (x b b 2 )g (x) b b (x t) 2 (x t) 2 ( λ)f (( λ)x λt)dλ dt ( λ)g (( λ)x λt)dλ dt. Integrting both sides of (28) w.r.t. x from to b, we hve (29) T s (f,g) (b ) (x t) 2 (x t) 2 where T s (f,g) S s (f,g)dx nd b ( λ)f (( λ)xλt)dλ dt ( λ)g (( λ)xλt)dλ dt dx, S s (f,g) f(x)g(x) (x b 2 ) f(x)g (x) g(x)f (x)]

94 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn b f(x) g(t)dt g(x) f(t)dt (x b b 2 )2 f (x)g (x) (x b 2 ) b f (x) g(t)dt b g (x) f(t)dt f(t)dt g(t)dt. b b. Since f, g re convex on,b], we hve T s (f,g) (b ) (x t) 2 (b ) (x t) 2 (x t) 2 ( g (x) (b ) { ( λ) 2 f (x) λ ( λ) f (t) dλ dt ( λ) 2 g (x) λ ( λ) g (t) dλ dt dx (x t) 2 ( f (x) ess sup t,b] ) g (t) 6 ( f (x) f (t) 6 dt dx f ) (t) 6 ) dt ( ) g (x) ess sup g (t) b 2 (x t) 2 dt t,b] 6 dx b 6 (b ) (2 f (x) f ) (2 g (x) g )E 2 (x)dx,

Ostrowski Grüss Čebyšev type inequlities... 95 where E(x) (x ) (b x). 2. Since f, g re log-convex on,b], from (29) we observe tht T s (f,g) b (b ) x t 2 f (x) ( λ) f (t) f (x) x t 2 g (x) ( λ) g λ (t) g (x) dλ dt dx b (b ) x t 2 f (x) ln A A (lna) 2 dt x t 2 g (x) ln B B (lnb) 2 dt dx, where A f (t) f (x) nd B g (t) g (x). λ dλ dt References ] N.S. Brnet, P. Cerone, S.S. Drgomir, M.R. Pinheiro, A. Sofo, Ostrowski type inequlities for functions whose modulus of derivtives re convexnd pplictions, RGMIA Res. Rep. Collec., 5 (2) (22), 29-2. 2] P. Cerone, S.S. Drgomir, Ostrowski type inequlities for functions whose derivtives stisfy certin convexity ssumptions, Demonstrtio Mth., 7 (2) (24), 299-8.

96 Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn ] S.S. Drgomir, Th. M. Rssis, (Eds.), Ostrowski type Inequlities nd Applictions in Numericl Integrtion, Kluwer Acdemic Publishers, Dordrect, 22. 4] S.S. Drgomir, A. Sofo, Ostrowski type inequlities for functions whose derivtives re convex, Proceeding of the 4th Interntionl Conference on Modelling nd Simultion, November -, 22. Victo ri University, Melbourne Austrsli. RGMIA Res. Rep. Collec., 5 (Supp) (22), Art.. 5] D. S. Mitrinovic, J.E. Pecric, A.M. Fink, Inequlities Involving Functions nd Their Integrls nd Derivtives, Kluver Acdemic Publishers, Dordrecht, 99. 6] D. S. Mitrinovic, J.E. Pecric, A.M. Fink, Clssicl nd New Inequlities in Anlysis, Kluwer Acdemic Publishers, Dordrect, 99. 7] A. Ostrowski, Über die Asolutbweichung einer differencienbren Functionen von ihren Integrlmittelwert, Comment. Mth. Hel, (98), 226-227. 8] B. G. Pchptte, A note on integrl Inequlities involving two logconvex functions, Mth. Inequl. Appl., 7 (4) (24), 5-55. 9] B. G. Pchptte, A note on ZHdmrd type Integrl Inequlities involving severl log-convex functions, Tmkng J. Mth., 6 () (25), 4-47. ] B. G. Pchptte, Mthemticl Inequlities, North-Hollnd Mthemticl Librry, Vol. 67 Elsvier, 25. ] B. G. Pchptte, On Ostrowski-Gruss-Cebysev type inequlities for functions whose modulus of derivtives re convex, JIPAM, 6 (4) (25), -4.

Ostrowski Grüss Čebyšev type inequlities... 97 2] J.E. Pecric, F.Proschn, Y.L. Tng, Convex functions, prtil orderings nd sttisticl Applictions, Acdemicx Press, New Yorek, 99. N. A. Mir, A. Rfiq, M. Rizwn COMSATS Institute of Informtion Technology Deprtment of Mthemtics Plot No., Sector H-8/ Islmbd 44, Pkistn E-mil: nmir@comsts.edu.pk, rfiq@comsts.edu.pk, mrizwn@comsts.edu.pk