Particle Identification with Disc DIRC at PANDA

Similar documents
The Barrel DIRC Detector for the PANDA Experiment at FAIR

The PANDA Endcap Disc DIRC

Status of the LHCb RICH and hadron particle identification

The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511

PoS(TIPP2014)093. Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS. K. Matsuoka, For the Belle II PID group

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

Cherenkov light imaging in particle and nuclear physics experiments

Cherenkov Detector Simulation

Results From The HARP Experiment

The Aerogel Forward RICH detector for PANDA

BaBar DIRC in SoLID. P. Nadel-Turonski, Z. Zhao, C. Hyde... SoLID bi-weekly meeting, January 15, 2013

arxiv: v1 [physics.ins-det] 28 Mar 2018

Guest Lecture PHY 7361: Harnessing Cherenkov Radiation SteveSekula, 13 April 2010 (created 9 April 2010)

Cherenkov Detectors in Particle Physics. Brad Wogsland University of Tennessee

Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID

Aerogel counter with a Fresnel lens. Guy Paic Instituto de Ciencias Nucleares UNAM Mexico

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons

Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR

Status of the LHCb RICH detector and the HPD

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

EP228 Particle Physics

The TORCH project. a proposed detector for precision time-of-flight over large areas. Roger Forty (CERN)

THE LHCb experiment [1] is a forward spectrometer

An Overview of RICH Detectors From PID to Velocity Spectrometers

STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS. 1 Brief Description of the ATLAS Tile Calorimeter

Detector. Matthew Strugari, Dr. Garth Huber 1, Wenliang Li. University of Regina, Regina, SK, S4S 0A2, Canada. August 15, 2016.

E (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2. Thir Gautam Hampton University

Tracking and Fitting. Natalia Kuznetsova, UCSB. BaBar Detector Physics Series. November 19, November 19, 1999 Natalia Kuznetsova, UCSB 1

Particle Identification of the LHCb detector

High-t Meson Photoproduction: Experimental Capabilities

Charged Particle Identification in GLUEX

Concepts of Event Reconstruction

Aerogel RICH counter for the Belle II forward PID

Timing and cross-talk properties of BURLE multi-channel MCP-PMTs

RICH detectors for LHCb

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009

Tests of the Burle anode MCP PMT as a detector of Cherenkov photons

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

Hadronic vs e + e - colliders

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

arxiv: v1 [physics.ins-det] 15 Oct 2018

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

Lecture 16 Light transmission and optical detectors

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

OPTICAL PROPERTIES OF THE DIRC FUSED SILICA CHERENKOV RADIATOR

Performance of the MCP-PMT for the Belle II TOP counter

Simulation studies of the PANDA detector at GSI

HARP (Hadron Production) Experiment at CERN

THE CERN NA62 experiment [1] aims to measure the

Muon reconstruction performance in ATLAS at Run-2

Lucite Hodoscope for SANE

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

Simulation of J/ψ detection via electron-positron decay

arxiv:hep-ex/ v1 19 Jun 2004

Refractive index dispersion law of silica aerogel

PANDA Muon System Prototype

Search for New and Unusual Strangeonia States Using γp pφη with GlueX at Thomas Jefferson National Accelerator Facility

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004

Der Silizium Recoil Detektor für HERMES Ingrid-Maria Gregor

DATA ANALYSIS: EXTRACTING SCIENCE FROM MAGIC

TORCH: A large-area detector for precision time-of-flight measurements at LHCb

A RICH Photon Detector Module with G-APDs

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Future Spin Observable Measurements at PANDA

The Ring Imaging Cherenkov detector of the AMS experiment: test beam results with a prototype

Relative branching ratio measurements of charmless B ± decays to three hadrons

Hybrid Avalanche Photo Detector for Belle II ARICH detector

Benjamin Carron Mai 3rd, 2004

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron

Rare Exclusive Decays. Results from BaBar on the. DPF-2002, College of William and Mary. University of California, Jeffrey Berryhill.

Transverse momentum spectra of identified charged hadrons with the ALICE detector in Pb-Pb collisions at the LHC

Time of Flight measurements with MCP-PMT

The Alice Experiment Felix Freiherr von Lüdinghausen

Information about the T9 beam line and experimental facilities

New Hadroproduction results from the HARP/PS214 experiment at CERN PS

Results from R&D of Cherenkov detectors at Novosibirsk

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group

Monte-Carlo simulations for Drell-Yan in COMPASS

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma

NA62: Ultra-Rare Kaon Decays

CLAS12 at Jefferson Lab

The ALICE Experiment Introduction to relativistic heavy ion collisions

Detectors & Beams. Giuliano Franchetti and Alberica Toia Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung

High-intensity anti-proton beam on internal pellet/cluster target.

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

Status of the MAGIX Spectrometer Design. Julian Müller MAGIX collaboration meeting 2017

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Likelihood Methods for Beam Particle Identification at the COMPASS Experiment

Theory English (Official)

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

7. Particle identification

The HERA-B ring imaging Cherenkov system } design and performance

Detectors for Particle Physics. Lecture 2: Drift detectors Muon detectors MWPC, CSC, RPC, TRT, TPC, Cherenkov

Overview Physical processes PMT and electronics response Some results Plans

Measurement of the baryon number transport with LHCb

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

Tracking at the LHC. Pippa Wells, CERN

Experimental Particle Physics

Transcription:

Particle Identification with Disc DIRC at PANDA Mustafa Schmidt, Simon Bodenschatz, Michael Düren, Erik Etzelmüller, Klaus Föhl, Avetik Hayrapetyan, Julian Rieke TIPP 217 May 23, 217 Mustafa Schmidt Particle Identification with Disc DIRC / 16 /16

Outline 1 Detector Concept 2 Detector Performance 3 DESY Testbeam 216 4 Summary & Outlook Mustafa Schmidt Particle Identification with Disc DIRC 1 / 16 1/16

PANDA Spectrometer Kaon phase space: 2/16 Mustafa Schmidt Particle Identification with Disc DIRC 2 / 16

Detector Overview Opening angle of Cherenkov Cone: ( ) 1 θ C = arccos n(λ)β with β = p/(m 2 + p2 ). mirror FEL z(φ') filter MCP-PMT particlestrack bar φ' ASICSreadout segmented PMTSanode Number of photons per track length according to Frank-Tamm-Formula: dn dx = 2παz 2 λ2 λ 1 ( ) 1 λ 2 1 n 2 (λ)β 2 λ 2 dλ θ c Photons/Event for π ± with 4 GeV/c momentum Φ rel radiator Mustafa Schmidt Particle Identification with Disc DIRC 3 / 16 3/16

Geometrical Model for Reconstruction FEL Particle Radiator Disk θ c ϕ particle α FEL tan ϕ = tan ϕ tan α FEL φ rel ϕ θ c = arccos(sin θ p cos φ rel cos ϕ + cos θ p sin ϕ) Mustafa Schmidt Particle Identification with Disc DIRC 4 / 16 4/16

Reconstruction Algorithm Input Parameters x p, y p, θ p, φ p, (t p) Mass Hypotheses m π, m K, m p Detected Hit Pattern n FEL, z, t Photon Propagation s ph, t ph Theoretical Hitpattern n FEL,theo, z theo Spatial Cut z z theo < z thresh Time Cut t t theo < t thresh Likelihood Value N ln L = (ln G(z i z pred,i ; σ z ) + ln G(t i t pred,i ; σ t )) (1) i= Mustafa Schmidt Particle Identification with Disc DIRC 5 / 16 5/16

Tracking Information Helix Parameters: Calculation of curvature from magnetic field: ρ[m] = p T [GeV].3B[T] x (λ) = x + Qρ cos(qλ φ ) y (λ) = y + Qρ sin(qλ φ ) Position [mm].15.1.5 Angle [mrad].5 1 1.5.5.1.15 1.5 2 2.5 3 3.5 4 Momentum [GeV/c] 2 2.5 3 1.5 2 2.5 3 3.5 4 Momentum [GeV/c] Mustafa Schmidt Particle Identification with Disc DIRC 6 / 16 6/16

Monte-Carlo Simulation Optical parameters in Monte-Carlo simulations: 1. Mean Cherenkov Angle Resolution transmission/efficiency.8.6.4.2 fused silica epoxy Al-coating edge-filter optical grease PC blue PC green efficiency I efficiency II Cherenkov Angle Resolution [mrad] 1.28 1.26 1.24 1.22 1.2 1.18. 2 25 3 35 4 45 5 55 6 wavelength [nm] 1.16 32 33 34 35 36 37 38 39 Wavelength [nm] events with π + at p = 4 GeV/c, θ = 12, φ = 45 : Pixel 9 Simulated Hitpattern Pixel 9 Predicted Hitpattern 2 8 8 7 7 6 6 5 5 4 1 4 3 3 2 2 1 2 3 4 5 6 7 FEL 1 2 3 4 5 6 7 FEL Mustafa Schmidt Particle Identification with Disc DIRC 7 / 16 7/16

Performance Analysis Separation power for different polar angles and momenta: Entries Separation Power vs. Polar Angle Mean Cherenkov Angle Resolution 3 Separation Power: 5.11529 5 Pion Resolution Kaon Resolution 4 Separation Power Blue Cathode Green Cathode 25 2 GeV/c 2 GeV/c 3 GeV/c 3 GeV/c 4 GeV/c 4 GeV/c 2 3 15 2 5.8.85.81.815.82.825.83 Cherenkov Angle [rad] 2D scan (polar and azimuth angles) for p = 4 GeV/v: Azimuth Angle [deg] 9 8 7 6 5 4 Mean: 4.43732 Separation Power 6 5 4 3 Separation Power [nσ] Azimuth Angle [deg] 9 8 7 6 5 4 12 14 16 18 2 Polar Angle [deg] Mean: 21.1583 Photon Hits 3 25 2 15 Number of Hits 3 2 3 2 1 2 5 12 14 16 18 2 22 Polar Angle [deg] 12 14 16 18 2 22 Polar Angle [deg] Mustafa Schmidt Particle Identification with Disc DIRC 8 / 16 8/16

Benchmark Channel Analysis Benchmark Channel: p p f π π K + K : Kaon Distribution p p f (15) π Polar Angle Distribution 1.5 GeV/c < p < 4 GeV/c Momentum [GeV/c] 9 8 7 6 12 8 Entries Kaon 2 Polar Angle θ [deg] 9 8 7 6 5 5 4.5 4 3.5 3 Entries 5 4 6 4 2.5 2 3 4 3 1.5 2 1 2 2 1.5 2 4 6 8 12 14 16 18 Polar Angle [deg] θ Kaon identification: 2 3 4 5 6 7 8 9 Kaon Polar Angle [deg] 1 θ Pion misidentification: Entries 22 2 18 16 14 Reconstructed Events Identified Events Entries 9 8 7 6 Reconstructed Events Identified Events 12 5 8 6 4 2 4 3 2 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 Invariant Mass [GeV] 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 Invariant Mass [GeV] Mustafa Schmidt Particle Identification with Disc DIRC 9 / 16 9/16

Testbeam Setup DESY testbeam setup for T24/1 hall: TOFPET: Free running readout device with 5 ps time resolution Mustafa Schmidt Particle Identification with Disc DIRC / 16 /16

Radiator Setup Testbeam radiator: Fused silica plate (5 cm 5 cm fused silica plate with 1 nm surface roughness) Mustafa Schmidt Particle Identification with Disc DIRC 11 / 16 11/16

Testbeam Fotos 12/16 Mustafa Schmidt Particle Identification with Disc DIRC 12 / 16

Measured Hitpattern Pixel 9 8 7 6 5 4 3 2 Angle Scan FEL1 2 4 6 8 12 14 16 18 2 22 Angle of Incidence [deg] Angle Scan FEL2 1 2 3 Hits/Trigger Pixel 9 8 7 6 5 4 3 2 Y-Scan FEL1 5 15 2 25 3 35 4 45 5 Y-Position [mm] Y-Scan FEL2 1 2 3 Hits/Trigger Pixel 9 8 7 6 5 4 3 2 2 4 6 8 12 14 16 18 2 22 Angle of Incidence [deg] 1 2 3 Hits/Trigger Pixel 9 8 7 6 5 4 3 2 5 15 2 25 3 35 4 45 5 Y-Position [mm] Mustafa Schmidt Particle Identification with Disc DIRC 13 / 16 1 2 3 Hits/Trigger 13/16

Testbeam Results Single photon resolution and photon yield: Single Photon Resolution FEL1 Photon Yield FEL1 Single Photon Resolution [mrad] 12 11 9 8 7 6 5 MC Simulation Testbeam Data Number of Hits 1.1 1.9.8.7 MC Simulation Testbeam Data 4 3.6 2 4 6 8 12 14 16 18 2 Angle of Incidence [deg] Event combination for vertical scan: 4 6 8 12 14 16 18 2 Angle of Incidence [deg] Single Photon Resolution Mean Cherenkov Angle Entries 35 3 Testbeam Data Entries 14 12 Testbeam Data MC Simulations MC Simulations 25 Double Gaussian Fit Gaussian Fit 2 8 15 6 4 5 2.79.8.81.82.83.84.85.86.87 Cherenkov Angle [rad].79.8.81.82.83.84.85.86.87 Cherenkov Angle [rad] Mustafa Schmidt Particle Identification with Disc DIRC 14 / 16 14/16

Conclusion & Outlook Monte-Carlo studies for TDR regarding detector performance completed Reconstruction & PID algorithms ready and tested Successfull Disc DIRC test in October 216 at DESY testbeam Further tests for photon yield and single photon resolution in cosmics test stand possible Benchmark channel analysis in progress Studies regarding online reconstruction promising and ongoing 15/16 Mustafa Schmidt Particle Identification with Disc DIRC 15 / 16

Thank you very much for your attention! Mustafa Schmidt Particle Identification with Disc DIRC 16 / 16 16/16