Long wavelengths and the Square Kilometre Array (in the context of radio continuum surveys) Vernesa Smolčić (University of Zagreb, Croatia)

Similar documents
Radio sources and their cosmic evolution: Predictions for the SKA. Vernesa Smolčić (University of Zagreb, Croatia)

An AGN census: the contribution of radio survey

Radio continuum surveys and galaxy evolution: The AGN view

Radio-selected AGN. Vernesa Smolčić (University of Zagreb, Croatia) VLA-COSMOS

Continuum Surveys with LOFAR, SKA and its Pathfinders. Chiara Ferra!

Dusty Quasars in a Teenage Universe

MOS: A critical tool for current & future radio surveys Daniel J.B. Smith, University of Hertfordshire, UK.

ASKAP-EMU: Overcoming the challenges of wide deep continuum surveys

CSIRO astronomy and space science (CASS) Ray Norris, CSIRO Astronomy & Space Science

THE GAS MASS AND STAR FORMATION RATE

Unveiling the Radio Sky with the JVLA and VLASS. Julie Hlavacek-Larrondo Canada Research Chair, Université de Montréal

Star-formation Across Cosmic Time: Initial Results from the e-merge Study of the μjy Radio Source Population. SPARCs VII The Precursors Awaken

High Redshift Universe

LeMMINGs the emerlin radio legacy survey of nearby galaxies Ranieri D. Baldi

Active Galactic Nuclei

Radio infrared correlation for galaxies: from today's instruments to SKA

The micro- and nano-jy sky

An Introduction to Radio Astronomy

AGN and Radio Galaxy Studies with LOFAR and SKA

The Cosmic Evolution of Neutral Atomic Hydrogen Gas. Philip Lah. Macquarie University Colloquium 27th March 2015

OBSERVING GALAXY CLUSTERS WITH NEXT GENERATION RADIO TELESCOPES. Melanie Johnston-Hollitt Victoria University of Wellington

Data Challenges for Next-generation Radio Telescopes

F : Are AGNs turned on by mergers?

AGN in hierarchical galaxy formation models

The Contribution of Active Galactic Nuclei to the Excess Cosmic Radio Background at 1.4 GHz

AGN and starburst galaxies at low radio flux densities

ngvla: Galaxy Assembly through Cosmic Time

Synergy with new radio facilities: from LOFAR to SKA

The Cosmic Evolution of Neutral Atomic Hydrogen Gas Philip Lah

Very long baseline interferometry detection of an Infrared-Faint Radio Source

Radio Quiet AGN: Black Hole & Host Galaxy Proper;es

Feeding the Beast. Chris Impey (University of Arizona)

Probing Galaxy evolution with Hi 21cm Absorption Spectroscopy

HI Signatures of galaxy evolution Thijs van der Hulst

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

GALAXY EVOLUTION STUDIES AND HIGH PERFORMANCE COMPUTING

Radio Properties Of X-Ray Selected AGN

An Introduction to Radio Astronomy

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

Future radio galaxy surveys

A zoo of transient sources. (c)2017 van Putten 1

Osservatorio Astronomico di Bologna, 27 Ottobre 2011

The Square Kilometre Array and the radio/gamma-ray connection toward the SKA era

Lecture 9. Quasars, Active Galaxies and AGN

TEMA 6. Continuum Emission

The Phenomenon of Active Galactic Nuclei: an Introduction

SCIENTIFIC CASES FOR RECEIVERS UNDER DEVELOPMENT (OR UNDER EVALUATION)

Introduction to Radio Interferometers Mike Garrett (ASTRON/Swinburne)

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers?

Connections between Radio and High Energy Emission in AGN

- Strong extinction due to dust

The VLA Sky Survey. Claire Chandler (on behalf of the VLASS Project Office and the Survey Science Group)

Perspektiven der. Radioastronomie. im Weltraum. J. Anton Zensus Silke Britzen. Max-Planck-Institut für. Radioastronomie

arxiv: v1 [astro-ph.ga] 31 Mar 2014

SKA Precursors and Pathfinders. Steve Torchinsky

Caitlin Casey, Jacqueline Hodge, Mark Lacy

On the fundamental dichotomy in the local radio-agn population: accretion, evolution and host galaxy properties

Black Holes and Active Galactic Nuclei

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs

Active Galactic Nuclei

The VLA CO Luminosity Density at High Redshift (COLDz) Survey

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

The Most Luminous Radio Galaxies

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

The star-formation history of mass-selected galaxies in the VIDEO survey

Observational Evidence of AGN Feedback

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

The Cosmic History of Star Formation. James Dunlop Institute for Astronomy, University of Edinburgh

Luminous radio-loud AGN: triggering and (positive?) feedback

J. Astrophys. Astr. (0000) 00,

The LeMMINGs e-merlin survey of nearby galaxies

Future Radio Interferometers

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Compact Obscured Nuclei in the ALMA era

The Superbubble Power Problem: Overview and Recent Developments. S. Oey

Commensal observing: HI science with MIGHTEE

Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies

Astr Resources

Multi-wavelength ISM diagnostics in high redshift galaxies

The Far-Infrared Radio Correlation in Galaxies at High Redshifts

Multi-wavelength Astronomy

Probing the Origin of Supermassive Black Hole Seeds with Nearby Dwarf Galaxies. Amy Reines Einstein Fellow NRAO Charlottesville

Design Reference Mission for SKA1 P. Dewdney System Delta CoDR

Reverse Ray-Tracing in Urchin

Hanny s Voorwerp: a nuclear starburst in IC2497

Active galaxies. Some History Classification scheme Building blocks Some important results

Chapter 17. Active Galaxies and Supermassive Black Holes

IRS Spectroscopy of z~2 Galaxies

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

Part two of a year-long introduction to astrophysics:

The Jansky-Very Large Array Sky Survey (VLASS)

PoS(PRA2009)015. Exploring the HI Universe with ASKAP. Martin Meyer. The DINGO team

Massive Outflows from Radio-Loud Quasars. Alan Stockton Hai Fu Institute for Astronomy University of Hawaii

Very Long Baseline Interferometry (VLBI) Wei Dou Tutor: Jianfeng Zhou

arxiv: v1 [astro-ph.ga] 16 Oct 2018

The Karl G. Jansky Very Large Array Sky Survey (VLASS)

A Monster at any other Epoch:

SKA - The next steps...

The distance modulus in the presence of absorption is given by

Transcription:

Long wavelengths and the Square Kilometre Array (in the context of radio continuum surveys) Vernesa Smolčić (University of Zagreb, Croatia)

Why radio? Galaxy spectral energy distribution Flux density 1. Quantum leap in Arp Radio instrumentation: Jansky VLA, 220 λ>1mm ATCA, ALMA 2. Dust-unbiased SF tracer at high angular resolution Radio loud AGN 3. Unique AGN, violating Unified model for AGN Infrared Herschel UV/Optical 1+2+3! answer key Spitzer open questions 1000 Å 10 µm 1 mm 10 cm wavelength Quantum leap in instrumentation: Jansky VLA, ATCA, ALMA, LOFAR, SKA & precursors

Major upgrade of existing radio facilities VLA (Very Large Array, USA) GMRT (Giant Metrewave Radio Telescope, India) ATCA (Australia Telescope Compact Array)

LOFAR Low Frequency Array (10-240 MHz) no movable parts; the whole observable sky at the same time; pointing is preformed electronically - multi beam observations; large collecting area and high sensitivity

SKA: The Square Kilometre Array " Locations: South Africa, Australia " Phase 1 (2018-2023): 10% of total collecting area " Phase 2 (2023-2030): full capability (1 sq. km collecting area) " First light: 2020 " Precursor Facilities: "! Australian SKA Pathfinder (ASKAP)! MeerKAT (South Africa)! Murchinson Widefield Array (MWA) Pathfinders: Apertif, VLBI, e-merlin, JVLA, LOFAR,

SKA key science applications " Advancing Astrophysics with the Square Kilometre Array https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=215 Braun et al. (2015)

SKA key science applications " Advancing Astrophysics with the Square Kilometre Array https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=215 Braun et al. (2014)

Current

ATLAS (Norris et al. 2006, Middelberg et al. 2008, Hales et al. 2013, Frazen et al. 2014, Banfield et al. 2014) 2GHz, 7 sq.deg, rms~15µjy ATLAS JVLA-SWIRE (Condon et al. 2012) 3GHz,~225amin 2, rms~1µjy JVLA-COSMOS (Smolcic et al. 2017) 3GHz, 2 sq.deg, rms~2.3µjy Current MIGHTEE-1

VLASS tier 1-3, >2015 Westerbork-WODAN (PI: Rottgering) northern sky, rms~10µjy/b 1000sq.deg, rms~5µjy/b ASKAP-EMU (PI: Norris) 1.1-1.4GHz, southern hemisphere, rms~10µjy/b, 10 resolution, >2015 ATLAS VLASS-3 MIGHTEE-2 MIGHTEE-1 VLASS-1 VLASS-2 Meerkat-MIGHTEE (PI: Van der Heyden & Jarvis) tier 1-3 SKA All sky: ~1µJy/b Wide: 5000sq.deg., 0.5µJy/beam Deep: 10 sq.deg., 50 njy/beam Current SKA1 Wide

Pathfinders ATCA ATLAS (2006-2014) 6 antennas 7 sq deg Rms=15 µjy ~6000 galaxies

Pathfinders ATCA ATLAS (2006-2014) 6 antennas JVLA - COSMOS (2013-2017) 27 antennas 7 sq deg Rms=15 µjy ~6000 galaxies 2 sq deg Rms=2 µjy ~11,000 galaxies

Pathfinders ATCA ATLAS (2006-2014) 6 antennas JVLA - COSMOS (2013-2017) 27 antennas VLA Sky Survey (2018-) 27 antennas 7 sq deg Rms=15 µjy ~6000 galaxies 2 sq deg Rms=2 µjy ~11,000 galaxies 34,000 sq deg Rms=69 µjy ~10 million galaxies

Pathfinders ATCA ATLAS (2006-2014) 6 antennas 7 sq deg Rms=15 µjy ~6000 galaxies JVLA - COSMOS (2013-2017) 27 antennas 2 sq deg Rms=2 µjy ~11,000 galaxies VLA Sky Survey (2018-) 27 antennas 34,000 sq deg Rms=69 µjy ~10 million galaxies ASKAP EMU early (2016-2018) 12 antennas 1000 sq deg Rms=30 µjy 0.5 million galaxies

Pathfinders ATCA ATLAS (2006-2014) 6 antennas 7 sq deg Rms=15 µjy ~6000 galaxies JVLA - COSMOS (2013-2017) 27 antennas 2 sq deg Rms=2 µjy ~11,000 galaxies VLA Sky Survey (2018-) 27 antennas 34,000 sq deg Rms=69 µjy ~10 million galaxies ASKAP EMU early (2016-2018) 12 antennas 1000 sq deg Rms=30 µjy 0.5 million galaxies ASKAP EMU (>2018) 30-36 antennas 3π sr Rms=10 µjy 70 million galaxies

Pathfinders ATCA ATLAS (2006-2014) 6 antennas 7 sq deg Rms=15 µjy ~6000 galaxies JVLA - COSMOS (2013-2017) 27 antennas 2 sq deg Rms=2 µjy ~11,000 galaxies VLA Sky Survey (2018-) 27 antennas 34,000 sq deg Rms=69 µjy ~10 million galaxies ASKAP EMU early (2016-2018) 12 antennas 1000 sq deg Rms=30 µjy 0.5 million galaxies ASKAP EMU (>2018) 30-36 antennas 3π sr Rms=10 µjy 70 million galaxies SKA1-SURVEY (>2020) 96 antennas 3π sr Rms=2 µjy 500? million galaxies

Radio populations 1. 2. M82 star forming galaxy Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI), and P. Puxley (National Science Foundation) 3. Centaurus A active galactic nucleus ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray) Star forming galaxies: supernovae remnants Active galactic nuclei: jets Synchrotron emission

Radio source counts Novak et al. (to be subm.) " Based on VLA-COSMOS 3 GHz Large Project (Smolcic et al. 2017) " ~8,000 radio sources out to z~5

The power of radio 1. M82 star forming galaxy Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI), and P. Puxley (National Science Foundation) 2. 3. Dust-unbiased SF tracer at high angular resolution Unique AGN, violating Unified model for AGN Quantum leap in instrumentation: Jansky VLA, ATCA, ALMA # SKA and precursors Centaurus A active galactic nucleus ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)

The power of radio 1. M82 star forming galaxy Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI), and P. Puxley (National Science Foundation) 2. 3. Dust-unbiased SF tracer at high angular resolution Unique AGN, violating Unified model for AGN Quantum leap in instrumentation: Jansky VLA, ATCA, ALMA # SKA and precursors Centaurus A active galactic nucleus ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)

The power of radio 1. M82 star forming galaxy Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI), and P. Puxley (National Science Foundation) Centaurus A active galactic nucleus ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray) 2. Dust-unbiased SF tracer at high angular resolution Unique AGN

Cosmic star formation history " Lilly Madau plot " Compilation based on different star formation estimators (UV, IR, radio, Hα..) " Dust correction = major challenge # Dust-unbiased star formation rate tracers (at high-z) needed Madau & Dickinson (2014) compilation

Cosmic star formation history at high-z " Lyman-Break Galaxy selection (HUDF +HUDF09, GOODS+ERS +CANDELS, CDF-S) " UV-based star formation " Dust extinction estimated based on UV-continuum slope No dust-extinction correction Contribution of IR-bright sources " Difficulty accounting for dusty starbursts (>100 M $ /yr) Bouwens et al. (2015)

Cosmic star formation history at high-z " Lyman-Break Galaxy selection (HUDF +HUDF09, GOODS+ERS +CANDELS, CDF-S) " UV-based star formation " Dust extinction estimated based on UV-continuum slope No dust-extinction correction Contribution of IR-bright sources " Difficulty accounting for dusty starbursts (>100 M $ /yr) Bouwens et al. (2015)! Dust-unbiased star formation rate tracers (at high-z) # radio

AGN in the radio regime: low-excitation (LE) vs. high excitation (HE) High-excitation = cold mode = radiatively efficient " Strong emission lines in optical spectrum " X-ray, MIR, optical AGN (Unified model for AGN) Low-excitation = hot mode = radiatively inefficient " Optical spectrum devoid of strong emission lines " Identified as AGN in the radio window " Usually LINER, absorption line AGN, FR I type " L 1.4GHz <10 26 W/Hz Fornax A Image: Heckman & Best (2014)

Other names Radio luminosity HERAGN LERAGN References HERG Cold-mode AGN Radiative-AGN Quasar-mode High SMBH accretors Thin-disk High (L 20cm 10 26 W/Hz) LERG Hot-mode AGN Jet-mode AGN Radio-mode Low SMBH accretors Thick-disk, ADAF Lower (L 20cm 10 26 W/Hz) e.g., Kauffmann et al. 2008, Best & Heckman 2012 LERG vs HERG: fundamental physical differences Source of radio emission SF+AGN AGN e.g., Moric et al. 2010; Hardcastle et al. 2013; Gurkan et al. 2015 Optical color Green Red e.g., Baum et al. 1992; Baldi & Capetti 2008; Smolčić et al. 2008; Smolčić 2009 Smolčić (2009) Stellar mass Lower than LERAGN Highest ( 5 10 10 M $ ) e.g., Kauffmann et al. 2008; Smolčić et al. 2008; Tasse et al. 2008; Smolčić 2009 RED SEQUENCE Gas mass BH mass Higher (3 10 8 M $ ) Lower than LERAGN Low (<4.3 10 7 M $ ) Highest (~10 9 M $ ) e.g., Smolčić & Riechers 2011 e.g., Baum et al. 1992; Chiaberge et al. 2005; Kauffmann et al. 2008; Smolčić et al. 2008; Smolčić 2009 u-r color GREEN VALLEY BH accretion rate BH accretion mode ~Eddington sub-eddington e.g., Haas 2004; Evans et al. 2006; Hardcastle et al. 2006, 2007; Smolčić 2009 Radiatively efficient Radiatively inefficient Environment Low-density Wider range of densities Cosmic evolution e.g., Evans et al. 2006; Merloni & Heinz 2008; Fanidakis et al. 2012 e.g., Gendre et al. 2013 Steep Mild e.g., Sadler et al. 2007, Donoso et al. 2009; Best et al. 2014; Smolčić et al. 2009, 2015; Padovani et al. 2011, 2015 BLUE CLOUD Log Stellar Mass [M $ ]

Other names Radio luminosity HERAGN LERAGN References HERG Cold-mode AGN Radiative-AGN Quasar-mode High SMBH accretors Thin-disk High (L 20cm 10 26 W/Hz) LERG Hot-mode AGN Jet-mode AGN Radio-mode Low SMBH accretors Thick-disk, ADAF Lower (L 20cm 10 26 W/Hz) e.g., Kauffmann et al. 2008, Best & Heckman 2012 LERG vs HERG: fundamental physical differences Source of radio emission SF+AGN AGN e.g., Moric et al. 2010; Hardcastle et al. 2013; Gurkan et al. 2015 Optical color Green Red e.g., Baum et al. 1992; Baldi & Capetti 2008; Smolčić et al. 2008; Smolčić 2009 Stellar mass Gas mass BH mass BH accretion rate BH accretion mode Lower than LERAGN Higher (3 10 8 M $ ) Lower than LERAGN Highest ( 5 10 10 M $ ) Low (<4.3 10 7 M $ ) Highest (~10 9 M $ ) e.g., Kauffmann et al. 2008; Smolčić et al. 2008; Tasse et al. 2008; Smolčić 2009 e.g., Smolčić & Riechers 2011 e.g., Baum et al. 1992; Chiaberge et al. 2005; Kauffmann et al. 2008; Smolčić et al. 2008; Smolčić 2009 ~Eddington sub-eddington e.g., Haas 2004; Evans et al. 2006; Hardcastle et al. 2006, 2007; Smolčić 2009 Radiatively efficient Radiatively inefficient Environment Low-density Wider range of densities Cosmic evolution e.g., Evans et al. 2006; Merloni & Heinz 2008; Fanidakis et al. 2012 e.g., Gendre et al. 2013 Steep Mild e.g., Sadler et al. 2007, Donoso et al. 2009; Best et al. 2014; Smolčić et al. 2009, 2015; Padovani et al. 2011, 2015 HERAGN or HERG or Cold mode AGN or Radiative mode AGN LERAGN or LERG or Hot mode AGN or Jet mode AGN Heckman & Best (2014)

Radio-mode AGN feedback in cosmological models U-B color GREEN VALLEY Faber et al. 2007 BLUE CLOUD RED SEQUENCE Log Stellar Mass [M $ ] RADIO MODE " maintenance mode " Once a static hot (X-ray) halo forms around galaxy " Modest BH growth " Radio outflows heat surrounding gas truncation of further stellar mass growth Allows good reproduction of observed galaxy properties Croton et al. 2006; Bower et al. 2006; Sijacki et al. 2006, Hopkins et al. 2006

Radio-mode AGN feedback in cosmological models Croton et al. 2006

Radio-mode AGN feedback in cosmological models Croton et al. 2006! Impact of AGN onto galaxy evolution?! radio

Quasar radio loudness dichotomy " One of the longest standing issues in observational astronomy " Fundamental physical differences between radio loud and radio quiet quasars?

Quasar radio loudness dichotomy JVLA-COSMOS 5σ limit

Quasar radio loudness dichotomy SKA1 All sky JVLA-COSMOS 5σ limit

The power of radio Star forming galaxies & radio AGN responsible for radio-mode feedback SKA & pathfinders 1. Dust-unbiased SF tracer at high angular resolution # Impact of dust onto the cosmic star formation history? 2. Unique AGN # Impact of AGN onto galaxy evolution? 3. Quantum leap in instrumentation: Jansky VLA, ATCA, ALMA # SKA and precursors