Pascal s Triangle (mod 8)

Similar documents
(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

arxiv: v1 [math.nt] 12 May 2017

Chapter 3: Theory of Modular Arithmetic 38

arxiv: v1 [math.co] 4 May 2017

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0},

A Bijective Approach to the Permutational Power of a Priority Queue

Divisibility. c = bf = (ae)f = a(ef) EXAMPLE: Since 7 56 and , the Theorem above tells us that

Semicanonical basis generators of the cluster algebra of type A (1)

Method for Approximating Irrational Numbers

Journal of Inequalities in Pure and Applied Mathematics

Solution to HW 3, Ma 1a Fall 2016

A proof of the binomial theorem

f h = u, h g = v, we have u + v = f g. So, we wish

ANA BERRIZBEITIA, LUIS A. MEDINA, ALEXANDER C. MOLL, VICTOR H. MOLL, AND LAINE NOBLE

(received April 9, 1967) Let p denote a prime number and let k P

CENTRAL INDEX BASED SOME COMPARATIVE GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS FROM THE VIEW POINT OF L -ORDER. Tanmay Biswas

Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal Numbers for Bipartite Graphs

On the Quasi-inverse of a Non-square Matrix: An Infinite Solution

On a generalization of Eulerian numbers

3.1 Random variables

6 PROBABILITY GENERATING FUNCTIONS

When two numbers are written as the product of their prime factors, they are in factored form.

On the ratio of maximum and minimum degree in maximal intersecting families

Surveillance Points in High Dimensional Spaces

3.6 Applied Optimization

New problems in universal algebraic geometry illustrated by boolean equations

Berkeley Math Circle AIME Preparation March 5, 2013

THE CONE THEOREM JOEL A. TROPP. Abstract. We prove a fixed point theorem for functions which are positive with respect to a cone in a Banach space.

ON THE INVERSE SIGNED TOTAL DOMINATION NUMBER IN GRAPHS. D.A. Mojdeh and B. Samadi

of the contestants play as Falco, and 1 6

4/18/2005. Statistical Learning Theory

Online Mathematics Competition Wednesday, November 30, 2016

9.1 The multiplicative group of a finite field. Theorem 9.1. The multiplicative group F of a finite field is cyclic.

On decompositions of complete multipartite graphs into the union of two even cycles

Markscheme May 2017 Calculus Higher level Paper 3

ON SPARSELY SCHEMMEL TOTIENT NUMBERS. Colin Defant 1 Department of Mathematics, University of Florida, Gainesville, Florida

H.W.GOULD West Virginia University, Morgan town, West Virginia 26506

A Short Combinatorial Proof of Derangement Identity arxiv: v1 [math.co] 13 Nov Introduction

On the integration of the equations of hydrodynamics

Pushdown Automata (PDAs)

SPECTRAL SEQUENCES. im(er

QIP Course 10: Quantum Factorization Algorithm (Part 3)

Unobserved Correlation in Ascending Auctions: Example And Extensions

COLLOQUIUM MATHEMATICUM

Fractional Zero Forcing via Three-color Forcing Games

The Substring Search Problem

Enumerating permutation polynomials

0606 ADDITIONAL MATHEMATICS

Miskolc Mathematical Notes HU e-issn Tribonacci numbers with indices in arithmetic progression and their sums. Nurettin Irmak and Murat Alp

A generalization of the Bernstein polynomials

NOTE. Some New Bounds for Cover-Free Families

VOLUMES OF CONVEX POLYTOPES

1) (A B) = A B ( ) 2) A B = A. i) A A = φ i j. ii) Additional Important Properties of Sets. De Morgan s Theorems :

Compactly Supported Radial Basis Functions

Chapter 5 Linear Equations: Basic Theory and Practice

Goodness-of-fit for composite hypotheses.

Circular Orbits. and g =

On a quantity that is analogous to potential and a theorem that relates to it

A STUDY OF HAMMING CODES AS ERROR CORRECTING CODES

Permutations and Combinations

Exploration of the three-person duel

THE NUMBER OF TWO CONSECUTIVE SUCCESSES IN A HOPPE-PÓLYA URN

The Chromatic Villainy of Complete Multipartite Graphs

PDF Created with deskpdf PDF Writer - Trial ::

arxiv: v1 [math.co] 6 Mar 2008

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8

Section 8.2 Polar Coordinates

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012

THE JEU DE TAQUIN ON THE SHIFTED RIM HOOK TABLEAUX. Jaejin Lee

16 Modeling a Language by a Markov Process

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

Tutorial Exercises: Central Forces

10/04/18. P [P(x)] 1 negl(n).

ONE-POINT CODES USING PLACES OF HIGHER DEGREE

What Form of Gravitation Ensures Weakened Kepler s Third Law?

arxiv: v2 [math.ag] 4 Jul 2012

Journal of Number Theory

BASIC ALGEBRA OF VECTORS

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

Quasi-Randomness and the Distribution of Copies of a Fixed Graph

HOW TO TEACH THE FUNDAMENTALS OF INFORMATION SCIENCE, CODING, DECODING AND NUMBER SYSTEMS?

7.2. Coulomb s Law. The Electric Force

On the ratio of maximum and minimum degree in maximal intersecting families

Asymptotically Lacunary Statistical Equivalent Sequence Spaces Defined by Ideal Convergence and an Orlicz Function

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Syntactical content of nite approximations of partial algebras 1 Wiktor Bartol Inst. Matematyki, Uniw. Warszawski, Warszawa (Poland)

The Archimedean Circles of Schoch and Woo

Review: Electrostatics and Magnetostatics

Quantum Fourier Transform

OLYMON. Produced by the Canadian Mathematical Society and the Department of Mathematics of the University of Toronto. Issue 9:2.

Australian Intermediate Mathematics Olympiad 2017

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side

Vanishing lines in generalized Adams spectral sequences are generic

Physics Tutorial V1 2D Vectors

ON LACUNARY INVARIANT SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULUS FUNCTIONS

q i i=1 p i ln p i Another measure, which proves a useful benchmark in our analysis, is the chi squared divergence of p, q, which is defined by

Using Laplace Transform to Evaluate Improper Integrals Chii-Huei Yu

Fall 2014 Randomized Algorithms Oct 8, Lecture 3

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis

Transcription:

Euop. J. Combinatoics (998) 9, 45 62 Pascal s Tiangle (mod 8) JAMES G. HUARD, BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS Lucas theoem gives a conguence fo a binomial coefficient modulo a pime. Davis and Webb (Euop. J. Combinatoics, (990), 229 233) extended Lucas theoem to a pime powe modulus. Making use of thei esult, we count the numbe of times each esidue class occus in the nth ow of Pascal s tiangle (mod 8). Ou esults coect and extend those of Ganville (Ame. Math. Monthly, 99 (992), 38 33). c 998 Academic Pess Limited. INTRODUCTION Let n denote a nonnegative intege. The nth ow of Pascal s tiangle consists of the n + binomial coefficients ( n ) ( 0,,...,n). Fo integes t and m with 0 t < m, we denote by N n (t, m) the numbe of integes in the nth ow of Pascal s tiangle which ae conguent to t modulo m. Clealy if d is a positive intege dividing m then (m/d) j0 N n ( jd + t, m) N n (t, d), 0 t < d. (.) When d the ight-hand side of (.) is N n (0, ) n +. In 899 Glaishe [3] showed that N n (, 2) is always a powe of 2, see Theoem A. In 99 Davis and Webb [2] detemined N n (t, 4) fo t 0,, 2, 3, see Theoem B. Thei esults show that N n (, 4) is always a powe of 2 and that N n (3, 4) is eithe 0 o a powe of 2. These facts wee also obseved by Ganville [4] in 992. In addition Ganville found fo odd t that N n (t, 8) is eithe 0 o a powe of 2. Unfotunately some of Ganville s esults on the distibution of the odd binomial coefficients modulo 8 in the nth ow of Pascal s tiangle ae incoect. We label Ganville s five assetions following Figue 2 on p. 324 of [4] as (α), (β), (γ ), (δ), and (ε). (Note that in the woding descibing Figue 2 the assetion each u j 2 is not coect as the block of 0 s in (n) 2 futhemost to the ight may contain just one zeo, fo example, n 78 has (n) 2 000.) We comment on each of (α), (γ ), (δ), and (ε). (α) This assetion is false. Take n 3 so that (n) 2. Thus t 2 and thee ae no othe t j s. Hence n 3 falls unde (α). Howeve, the thid ow of Pascal s tiangle is, 3, 3, contadicting the assetion of (α). (γ ) This assetion is false. Take n 9 so that (n) 2 00. Thus t, u 2, and t 2 2. Hence n 9 falls unde (γ ). Howeve, the fist half of the 9th ow of Pascal s tiangle modulo 8 is, 3, 3,, 4, 4, 4, 4, 6, 2 so that N 9 (, 8) 4, N 9 (7, 8) 0, contadicting Ganville s claim that N 9 (, 8) N 9 (7, 8). (δ) This assetion does not tell the full stoy. Take n 39 so that (n) 2 00. Thus t, u 2, t 2 3, and n 39 falls unde (δ). Hee N 39 (t, 8) 4 (t, 3, 5, 7). On the othe hand if n 56 then (n) 2 0000 so that t, u 2, t 2 3, u 2 2, and n 56 falls unde (δ). Hee N 56 (, 8) N 56 (3, 8) 8, N 56 (5, 8) N 56 (7, 8) 0. (ε) This assetion is false. If n 3699 then (n) 2 0000 so that t 3, u 2, t 2 3, u 2 2, t 3 2, and n 3699 falls unde (ε). Howeve N 3699 (, 8) N 3699 (3, 8) 28, N 3699 (5, 8) N 3699 (7, 8) 0, contadicting Ganville s claim that N 3699 (, 8) N 3699 (3, 8) N 3699 (5, 8) N 3699 (7, 8). 095-6698/98/00045 + 8 $25.00/0 ej97046 c 998 Academic Pess Limited

46 J. G. Huad et al. This aticle was motivated by the desie to find the coect evaluation of N n (t, 8) when t is odd (see Theoem C (thid pat)). In addition ou method enables us to detemine the value of N n (t, 8) when t is even, a poblem not consideed by Ganville, see Theoem C (fist and second pats). Ou evaluation of N n (t, 8) involves the binay epesentation of n, namely n a 0 + a 2 + a 2 2 2 + +a l 2 l, whee l 0, each a i 0o,anda l unless n 0 in which case l 0 and a 0 0. Fo bevity we wite a 0 a...a l fo the binay epesentation of n. Note that ou notation is the evese of Ganville s notation [4]. On occasion it is moe convenient to conside a 0 a...a l as a sting of 0 s and s. The context will make it clea which intepetation is being used. The length of the ith block of 0 s (espectively s) in a 0 a...a l is denoted by v i (espectively s i ). We conside n to begin with a block of 0 s and to finish with a block of s. Thus, the binay epesentation of n 389743 is 000000 and v 0, s 4, v 2, s 2 2, v 3 2, s 3, v 4 2, s 4 5, v 5, s 5. Thoughout this aticle denotes an abitay intege between 0 and n inclusive. The binay epesentation of is (with additional zeos at the ight-hand end if necessay) b 0 b...b l. The exact powe of 2 dividing the binomial coefficient ( n ) is given by a special case of Kumme s theoem [5]. PROPOSITION (KUMMER [5]). Let c(n, ) denote the numbe of caies when adding the binay epesentations of and n. Then 2 c(n,) ( ) n. Conside now the addition of the binay epesentation b 0 b...b l of to that of n to obtain the binay epesentation a 0 a...a l of n. If no cay occus in the (i )th position then thee is no cay in the ith position if b i a i, wheeas thee is a cay in the ith position if b i > a i. This simple obsevation enables us to say when c(n, ) 0,o2. PROPOSITION 2. (a) c(n, ) 0 b i a i (i 0,,...,l). (b) c(n, ) and the cay occus in the f th position (0 f l ) a f a f + 0, b f b f + 0, and b i a i (i f, f + ). (c) c(n, ) 2 and the caies occu in the f th and gth positions (0 f < g l ) a f a f + 0, b f b f + 0, a g a g+ 0, b g b g+ 0, if g f +, a f a f + a f +2 0, b f b f + b f +2 0, o a f a f + a f +2 00, b f b f + b f +2 0, if g f +, and ( denotes 0 o.) b i a i (i f, f +, g, g + ). If S denotes a nonempty sting of 0 s and s, we denote by n S the numbe of occuences of S in the sting a 0 a...a l. Fo example, if n 496 00000 then n 0 5, n 6, n 00 2, n 0 3, n 0 2, n 3, n 000, n 00.

Pascal s Tiangle (mod 8) 47 Popositions and 2(a) enable us to pove Glaishe s fomulae [3]. THEOREM A(GLAISHER [3]). N n (0, 2) n + 2 n, N n (, 2) 2 n. PROOF. We have N n (, 2) 0 ( n ) (mod 2) 0 c(n,)0 b 0,...,b l 0 (a 0 + ) (a l + ) 2 n. The fomula fo N n (0, 2) now follows fom (.) with d and m 2. Similaly we can pove Davis and Webb s fomulae [2]. THEOREM B(FIRST PART, DAVIS AND WEBB [2]). N n (0, 4) n + 2 n n 0 2 n, N n (2, 4) n 0 2 n. PROOF. Appealing to Popositions and 2(b), we have N n (2, 4) 0 ( n ) 2 (mod 4) f 0 a f a f + 0 l j0 j f, f + f 0 0 c(n,) cay in f th place (a j + ) f 0 a f a f + 0 f 0 a f a f + 0 2 n n 0 2 n. a 0,...,a f,a f +2,...,a l b 0,...,b f,b f +2,...,b l 0 b f b f + 0 Fom (.) with m 4, d 2, and t 0, we have N n (0, 4) + N n (2, 4) N n (0, 2), fom which the value of N n (0, 4) follows. Likewise we can use Popositions and 2(c) to detemine N n (0, 8) and N n (4, 8). THEOREM C(FIRST PART). N n (0, 8) n + (n 00 + )2 n n 0 2 n 2 n 0 (n 0 + 3)2 n 3, N n (4, 8) n 00 2 n + n 0 2 n 2 + n 0 (n 0 )2 n 3.

48 J. G. Huad et al. PROOF. We have N n (4, 8) 0 ( n ) 4 (mod 8) f 0 a f a f + a f +2 0 + l 3 f 0 a f a f + 0 f 0 a f a f + a f +2 0 + l 3 f 0 a f a f + 0 f 0 a f a f + a f +2 0 0 c(n,)2 a 0,...,a f,a f +3,...,a l b 0,...,b f,b f +3,...,b l 0 b f b f + b f +2 0 g f +2 a g a g+ 0 l j0 j f, f +, f +2 g f +2 a g a g+ 0 + 2 + f 0 a f a f + a f +2 00 a 0,...,a f,a f +2,...,a g,a g+2,...,a l b 0,...,b f,b f +2,...,b g,b g+2,...,b l 0 b f b f + b g b g+ 0 (a j + ) + 2 l j0 j f, f +,g,g+ f 0 a f a f + a f +2 00 f 0 a f a f + a f +2 00 (a j + ) 2 n + l 3 f 0 a f a f + 0 n 0 2 n 2 + n 00 2 n + n 0(n 0 ) 2 n 2. 2 The value of N n (0, 8) follows fom (.) with m 8, d 4, and t 0. a 0,...,a f,a f +3,...,a l b 0,...,b f,b f +3,...,b l 0 b f b f + b f +2 0 l j0 j f, f +, f +2 g f +2 a g a g+ 0 (a j + ) Although Kumme s esult (Poposition ) enabled us to detemine N n (, 2), N n (2, 4), and N n (4, 8), it is clea that we need a moe pecise conguence fo ( n ) to be able to detemine N n (t, 4) fo t, 3 and N n (t, 8) fo t, 2, 3, 5, 6, 7. The equied conguences fo ( n) modulo 4 and modulo 8 ae povided by the Davis Webb conguence, which is the subject of the next section. It is undestood thoughout that an empty sum has the value 0, an empty poduct the value, and 0 n, if n 0, 0, if n. 2. THE DAVIS WEBB CONGRUENCE In ode to state the Davis Webb conguence fo ( n ) modulo 2 h, we need the binay vesion of the symbol c d defined by Davis and Webb [] fo abitay nonnegative integes c c0 c...c s and d d 0 d...d s (whee additional zeos have been included at the ight-hand of eithe c o d, if necessay, to make thei binay epesentations the same length). If c 0 c...c i < d 0 d...d i fo i 0,,...,s, weset c 2 s+. d Othewise we let u denote the lagest intege between 0 and s inclusive fo which c 0 c...c u d 0 d...d u, and set ( ) c 2 s u c0 c...c u. d d 0 d...d u

Pascal s Tiangle (mod 8) 49 TABLE. Values of [ c 0 ] d. 0 c 0 d 0 0 0 TABLE 2. Values of [ c 0 c ] d 0 d. c 0 c d 0 d 00 0 0 00 0 3 0 3 Thus, fo example, if c 26 000 and d 39 00, we have s 5 and u 4so that ( ) ( ) 26 00 26 2 5 4 2. 39 00 7 The symbol c d is an extension of the odinay binomial coefficient since fo 0 d c we have u s and so c ( d c d). The odd pat of c [ d is denoted by c [ d]. The values of c d] fo s 0,, and 2 ae given in Tables 3 espectively. Fo ou puposes it is also convenient to set fo s c0 c...c s [ ] c d 0 d...d s odd pat of. d c0 c...c s d 0 d...d s The values of [ c d] fo s and 2 ae given in Tables 4 and 5 espectively. Fom Tables 5 we obtain the assetions of Lemma. LEMMA. [ ] c0 (a). d [ 0 ] c0 c (b) d 0 d [ ] c0 c (c) d 0 d [ ] c0 c (d) d 0 d (e) [ c0 c 0 d 0 d d 2 ]. (mod 4), if c 0 c, ( ) d 0+d (mod 4), if c 0 c. (mod 8), if c 0 c, ( ) d 0+d 5 d 0+d (mod 8), if c 0 c. (mod 4), if c 0 c, ( ) d 0+d (mod 4), if c 0 c.

50 J. G. Huad et al. TABLE 3. Values of [ c 0 c c 2 ] d 0 d d. 2 c 0 c c 2 d 0 d d 2 000 00 00 0 00 0 0 000 00 3 5 3 7 00 3 3 5 5 2 0 5 5 35 00 5 5 35 0 3 3 2 0 3 7 TABLE 4. Values of [ c 0 c ] d 0 d. c 0 c d 0 d 00 0 0 00 0 3 0 3 [ ] c0 0 (f) ( ) d 0 0 +c 0 (mod 4), ifc 0 d 0. [ ] 0 c2 (g) ( ) 0 d c 2 (mod 4). [ 2 ] c0 (h) ( ) d 0 d d d +d 2 (mod 4), if c 0 d 0. [ 2 ] c0 c (i) c 2 (mod 4), if c d 0 d d c 2 and c d. [ 2 ] 0 (j) 5 d 0 0 d d 0+d 2 (mod 8). [ 2 ] 0 (k) ( ) 0 d d d +d 2 (mod 8). [ 2 ] (l) ( ) d 0 d d d +d 2 5 d 0+d 2 (mod 8). [ 2 ] c0 c (m) c 2 (mod 8), if c d 0 d d 0 c c 0, 0,, and c i d i (i 0,, 2). 2 Let h be an intege with h 2. When l h, Davis and Webb [] have given a conguence fo ( n ) (mod p h ) fo any pime p. (Ganville s Poposition 2 in [4] is the special case of Davis and Webb s conguence when p ( n ).) When p 2 thei conguence can be expessed using Poposition in the fom: DAVIS WEBB CONGRUENCE (mod 2 h ). Fo 2 h l + ( ) [ ] n 2 c(n,) a0 a...a l h+ h 2 [ ] ai a i+...a i+h b 0 b...b h 2 b i b i+...b i+h (mod 2 h ). (2.)

Pascal s Tiangle (mod 8) 5 TABLE 5. Values of [ c 0 c c 2 ] d 0 d d. 2 c 0 c c 2 d 0 d d 2 000 00 00 0 00 0 0 000 00 5 3 7/3 00 3 5 5 7 0 5 5 35 00 5 5 35 0 3 7 0 7/3 Ou next task is to make the Davis Webb conguence (mod 2 h ) explicit in cetain cases when h 2 and h 3 by means of Lemma. It is convenient to set E a i a i+ (b i + b i+ ), E 2 Fo an intege f with 0 f l we also set H f i f, f, f + a i a i+ a i a i+2 (b i + b i+ ). (b i + b i+2 ). DAVIS WEBB CONGRUENCE (mod 4). Fo l and c(n, ) 0, we have ( ) E (mod 4). PROOF. Taking h 2 and c(n, ) 0 in (2.), we obtain fo l ( ) [ ] n l a0 [ ] ai a i+ (mod 4). b i b i+ b 0 Appealing to Lemma (a)(d), we obtain l a i a i+ ( ) b i +b i+ ( ) l a i a i+ (b i + b i+ ) ( ) E (mod 4). DAVIS WEBB CONGRUENCE (mod 8). (a) Fo l 2 and c(n, ) 0, we have ( ) E 5 E 2 (mod 8), if a 0 a, ( ) E 5 b 0+b +E 2 (mod 8), if a 0 a.

52 J. G. Huad et al. (b) Fo l 2 and c(n, ), we have 2( ) +a f +a f +2 +H f (mod 8), whee f (0 f l ) is the position of the cay when adding the binay epesentations of and n, and a, a l+ 0. PROOF. (a) Taking h 3 and c(n, ) 0 in (2.), we obtain fo l 2 ( ) [ ] n l 2 a0 a [ ] ai a i+ a i+2 (mod 8). b 0 b b i b i+ b i+2 By Poposition 2(a) we have b i a i fo i 0,...,l. Appealing to Lemma (j)(k)(l)(m), we obtain mod 8: ( ) [ n a0 a ] l 2 b 0 b l 2 a i a i+ a i+2 [ a0 a ] l 2 b 0 b i a i a i+ a i+2 0 5 b l 2 i +b i+2 ( ) b i++b i+2 5 b i +b i+2 a i a i+2 [ ] l 2 a0 a b 0 b [ ] a0 a 5 b 0 b a i a i+2 l 2 5 b l 2 i +b i+2 a i a i+ a i+2 0 a i+ a i+2 5 b l i +b i+2 (b i +b i+2 ) a i a i+2 i a i a i+ ( ) ( ) b i++b i+2 ( ) b i +b i+ l (b i +b i+ ) i a i a i+ ( ) b i++b i+2 If a 0 a, then, by Lemma (c), we have ( n ) ( ) E 5 E 2 (mod 8). If a 0 a then, by Lemma (c), we have ( ) b 0+b 5 b 0+b 5 E 2 ( ) E (b 0 +b ) ( ) E 5 b 0+b +E 2 (mod 8). (b) Taking h 3 and c(n, ) in (2.), we obtain fo l 2 ( ) [ ] n l 2 a0 a 2 [ ] ai a i+ a i+2 (mod 8). b 0 b b i b i+ b i+2 We let f (0 f l ) be the position of the cay so that by Poposition 2(b).

Pascal s Tiangle (mod 8) 53 a f a f + 0, b f b f + 0, and a k b k fo k f, f +. We have, by Lemma (h)(i)(l), [ ] l 2 a0 a b 0 b [ a0 a i f 2, f, f ] l b 0 b [ ] a0 a b 0 b ( ) l i i f, f, f + ( ) i f, f, f + a i a i+ [ ] ai a i+ a i+2 b i b i+ b i+2 l i i f, f, f + a i a i+ (b i +b i+ ) [ ] ai a i a i+ b i b i b i+ (b i +b i+ ) ( ) H f (mod 4). We now conside fou cases: (i) f 0; (ii) f ; (iii) 2 f l 2; and (iv) f l. In each case we must detemine P l 2 i f 2, f, f [ ai a i+ a i+2 b i b i+ b i+2 ] (mod 4). Case (i). f 0. In this case we have P [ 0 a2 0 b 2 ] ( ) a 2 (mod 4), by Lemma (g), so that 2( ) H f ( ) a 2 2( ) +a f +a f +2 +H f (mod 8). Case (ii). f. Hee P [ a0 0 b 0 0 ] [ 0 a3 0 b 3 ] ( ) +a 0 ( ) a 3 ( ) +a 0+a 3 (mod 4), by Lemma (f)(g), so that 2( ) H f ( ) +a 0+a 3 2( ) +a f +a f +2 +H f (mod 8). Case (iii). 2 f l 2. Hee [ ] [ a P f 2 a f 0 a f 0 b f 2 b f b f 0 ] [ 0 a f +2 0 b f +2 ] ( ) +a f +a f +2 (mod 4), by Lemma (e)(f)(g), so that 2( ) H f ( ) +a f +a f +2 2( ) +a f +a f +2 +H f (mod 8).

54 J. G. Huad et al. Case (iv). f l. Hee [ ] [ al 3 a P l 2 0 al 2 0 b l 3 b l 2 b l 2 0 ] ( ) +a l 2 (mod 4), by Lemma (e)(f), so that 2( ) H f ( ) +a l 2 2( ) +a f +a f +2 +H f (mod 8). Ou final task in this section is to give the mechanism wheeby we can count the numbe of integes (0 n) fo which ( n ) is in a paticula esidue class (mod 4) o (mod 8). This mechanism is povided by the next lemma. LEMMA 2. Let c 0,...,c l be integes. Then b 0,...,b l 0 ( ) l c i b i PROOF. We have b 0,...,b l 0 ( ) l c i b i 2 n, if c i 0 (mod 2) fo each i 0,,...,l with a i, 0, if c i (mod 2) fo some i (0 i l) with a i. l ( ai ) ( ) c i b i b i 0 l ( a i ) ( ) c i b i b i 0 l ( + ( ) c i ) a i l 2, if c i 0 (mod 2) fo each i with a i, a i 0, if c i (mod 2) fo some i with a i. In applying Lemma 2 in the evaluation of N n (t, 4)(t, 3) and N n (t, 8)(t, 2, 3, 5, 6, 7) a numbe of finite sums involving E and E 2 aise. These sums ae evaluated in Lemmas 3 7. LEMMA 3. b 0,...,b l 0 ( ) E 0 n 2 n. PROOF. Set S a 0,...,a l b 0,...,b l 0 ( )E. Fo j 0,,...,l let c j denote the numbe of occuences of b j in E a i a i+ (b i + b i+ ), so that S a 0,...,a l b 0,...,b l 0 ( ) l c i b i. If n 0 then c j 0 (0 j l) so S 2 n by Lemma 2. If n > 0 let u be the least intege (0 u l ) such that a u a u+. Then c u and S 0 by Lemma 2. LEMMA 4. b 0,...,b l 0 ( ) E 2 2 n, if n 0 n 0, 0, if n 0 > 0 o n > 0.

Pascal s Tiangle (mod 8) 55 PROOF. Set S a 0,...,a l b 0,...,b l 0 ( )E 2. Fo j 0,,...,l let c j denote the numbe of occuences of b j in E 2 a i a i+2 (b i + b i+2 ). If n 0 n 0 then c j 0 (0 j l) so, by Lemma 2, we have S 2 n.ifn 0 > 0 o n > 0 let s be the least intege such that a s a s+2 (0 s l 2). Then c s and S 0 by Lemma 2. Befoe stating the next lemma, we emind the eade that the length of the ith block of 0 s in a 0 a...a l is denoted by v i and the length of the ith block of s by s i. We conside a 0 a...a l to stat with a block of 0 s and finish with a block of s. LEMMA 5. Fo n 0, if n 0 > 0 o n > 0, ( ) E +E 2 0, if n 0 n 0 and some s i 2, b 0,...,b l 0 2 n, if n 0 n 0 and each s i o 3. PROOF. The lemma is easily checked fo l 0,, 2 so we may suppose that l 3. Let S a 0,...,a l b 0,...,b l 0 ( )E +E 2. Fo j 0,,...,l let c j denote the numbe of occuences of b j in E + E 2 a i a i+ (b i + b i+ ) + a i a i+ a i+2 0 (b i + b i+2 ) + a i a i+ a i+2 (b i + b i+2 ). Suppose fist that n 0 n 0 and some s i 2, whee i. Hence thee exists an intege u (0 u l ) such that a u a u+, a u 0ifu, and a u+2 0if u l 2. Let u be the least such intege. Then c u and S 0 by Lemma 2. Suppose next that n 0 n 0 and each s i o3. Let j (0 j l) be an intege such that a j. If j 0 and a 0, then a 2 0 and c j 0. If j 0 and a, then a 2 and c j 2. If j l and a l 0, then a l 2 0 and c j 0. If j l and a l, then a l 2 and c j 2. Now suppose j l. If a j a j a j+ 00 then c j 0. If a j a j a j+ 0 then j 2 and a j 2 a j a j a j+ 0 so that c j 2. If a j a j a j+ 0 then j l 2 and a j a j a j+ a j+2 0 so that c j 2. If a j a j a j+ then c j 2. Hence c j is even fo evey j with a j. Thus, by Lemma 2, we have S 2 n. Now suppose that n 0 > 0. Let s be the least intege such that a s a s+ a s+2 0. If s 0 then c s. If s and a s 0 then c s. If s and a 0 then c 0. If s 2, a s, and a s 2 0 then c s. If s 2, a s, and a s 2 then c s 3. Hence, by Lemma 2, we have S 0. Finally suppose that n > 0. Let w be the least intege such that a w a w+ a w+2 a w+3. Then c w+ 3 and, by Lemma 2, we have S 0. LEMMA 6. If a 0 a then b 0,...,b l 0 ( ) b 0+b +E 2 0.

56 J. G. Huad et al. PROOF. Set S a 0,...,a l b 0,...,b l 0 ( )b 0+b +E 2. Let c j (0 j l) denote the numbe of occuences of b j in b 0 + b + E 2 b 0 + b + a i a i+2 (b i + b i+2 ). Let k( k l) be the lagest intege such that a 0 a...a k... Then c k. Hence, by Lemma 2, S 0. LEMMA 7. If a 0 a then 0, if n 0 > 0 o n > 0, 0, if n 0 n 0 and some s i 2 with i 2, ( ) b 0+b +E +E 2 0, if n 0 n 0 and each s i o 3, b 0,...,b l 0 2 n, if n 0 n 0, s 2, and each s i o 3 with i 2. PROOF. Set S a 0,...,a l b 0,...,b l 0 ( )b 0+b +E +E 2. Fo j 0,,...,l, let c j denote the numbe of occuences of b j in b 0 + b + a i a i+ (b i + b i+ ) + a i a i+2 (b i + b i+2 ). Suppose fist that n 0 > 0. Let s (0 s l 2) be the least intege such that a s a s+ a s+2 0. As a 0 a we have s. If s then a s a 0 and c 3. If s 2 and a s 0, then a s 2 0 and s 4, so that c s. If s 2 and a s 2 a s then c s 3. If s 2 and a s 2 0, a s, then s 3 and a s 3 0, so that c s. Hence, by Lemma 2, S 0. Suppose next that n > 0. Let s (0 s l 3) be the least intege such that a s a s+ a s+2 a s+3. If s 0 then c 0 3. If s then a s 0 and c s+ 3. Hence, by Lemma 2, S 0. Now suppose that n 0 n 0 and some s i 2 with i 2, say a s a s+. As a 0 a and n 0 0 we have s 4. Clealy a s 2 a s 00. Hence c s, and, by Lemma 2, we have S 0. Next suppose that n 0 n 0 and each s i o 3. Then, as a 0 a, we must have a 2. Thus c 0 3 and, by Lemma 2, we have S 0. Finally suppose that n 0 n 0, s 2, and each s i (i 2) o 3. Clealy c 0 c 2, c i 0ifa i a i a i+ 00 (4 i l ), c l 0ifa l a l 0, and c i c i c i+ 2ifa i a i a i+ (5 i l ). Thus c i is even fo all i with a i so that, by Lemma 2, we have S 2 n. In Section 3 we use the Davis Webb conguence (mod 4) to detemine N n (, 4) and N n (3, 4), theeby epoving the fomulae due to Davis and Webb [2] (see Theoem B (second pat)). In Sections 4 and 5 we employ the Davis Webb conguence (mod 8) to detemine N n (t, 8) (t 2, 6) (see Theoem C (second pat) in Section 4) and N n (t, 8) (t, 3, 5, 7) (see Theoem C (thid pat) in Section 5). 3. EVALUATION OF N n (, 4) AND N n (3, 4) In this section we illustate ou methods by e-establishing the fomulae fo N n (, 4) and N n (3, 4) due to Davis and Webb [2].

THEOREM B(SECOND PART, DAVIS AND WEBB [2]). 2 n, if n 0, N n (, 4) 2 n N n (3, 4), if n > 0, Pascal s Tiangle (mod 8) 57 0, if n 0, 2 n, if n > 0. PROOF. It is easily checked that the fomulae hold fo n 0, so that we may take n 2. Thus l. Fo t and 3, we have N n (t, 4) 0 ( n ) t(mod4) b 0,...,b l 0 ( ) E t(mod4) by Poposition, Poposition 2(a), and the Davis Webb conguence (mod 4). Hence N n (t, 4) b 0,...,b l 0 E 2 (t ) (mod 2) 2 b 0,...,b l 0 2 n + a 0 2 ( ),...,a l 2 (t ) b 0,...,b l 0, ( + ( ) 2 (t )+E ) ( ) E 2 n + ( ) 2 (t ) 2 n, if n 0, 2 n, if n > 0, by Lemma 3. 4. EVALUATION OF N n (2, 8) AND N n (6, 8) In this section we evaluate N n (2, 8) and N n (6, 8). THEOREM C(SECOND PART). n 0 2 n n 00 2 n, if n 0, N n (2, 8) n 0 2 n 2 n 0 2 n 2 + n 00 2 n, if n, n 0 2 n 2, if n 2. n 00 2 n, if n 0, N n (6, 8) n 0 2 n 2 + n 0 2 n 2 n 00 2 n, if n, n 0 2 n 2, if n 2. PROOF. It is easily checked that the theoem holds fo n 0,, 2, 3 (equivalently l 0, ). Hence we may assume that l 2. Fo t 2 and 6 we have, by Poposition, N n (t, 8) 0 ( n ) t (mod 8) 0 c(n,) ( n ) t (mod 8) f 0 0 c(n,) cay in f th place ( n ) t (mod 8) Befoe continuing it is convenient to intoduce some notation. Let S be a sting of 0 s and s of length k. Fo 0 i i + k l we set (( )) ai a i+...a i+k, if a i a i+...a i+k S, S 0, if a i a i+...a i+k S..

58 J. G. Huad et al. Now, by the Davis Webb conguence (mod 8), we have t (mod 8) 4 (t + 2) + a f + a f +2 + H f 0 (mod 2). Next, let E f 2 a i a i+ (b i + b i+ ), E i f +2 a i a i+ (b i + b i+ ), so that E + E H f. Hence the Davis Webb conguence (mod 8) becomes t (mod 8) 4 (t + 2) + a f + a f +2 + E + E 0 (mod 2). Hence N n (t, 8) f 0 a f a f + 0 a 0,...,a f,a f +2,...,a l b 0,...,b f,b f +2,...,b l 0 b f b f + 0 n 0 2 n 2 + 2 ( ) 4 (t+2) l a f +2,...,a l b f +2,...,b l 0 Now, by Lemma 3,we have ( ) E. f 0 a f a f + 0 2 ( + ( ) 4 (t+2)+a f +a f +2 +E +E ) ( ) a f +a f +2 a 0,...,a f b 0,...,b f 0 ( ) E a 0,...,a f b 0,...,b f 0 ( ) E 0 n 2 n, a f +2,...,a l b f +2,...,b l 0 ( ) E 0 n 2 n, whee n is the numbe of s in a 0a...a f, n is the numbe of s in a f +2...a l, n is the numbe of occuences of in a 0 a...a f, and n is the numbe of occuences of in a f +2...a l. Hence a 0,...,a f a f +2,...,a l ( ) E ( ) E 0 n +n 2 n 0 n 2 n, if a +n f +2 0, 0 n 2 n, if a f +2. b 0,...,b f 0 b f +2,...,b l 0 Thus fo n > we have N n (t, 8) n 0. Next fo n we have N n (t, 8) n 0 + 2 ( ) 4 (t+2) n 0 ( ) 4 (t+2) f 0 a f a f + a f +2 0 f 0 a f a f + a f +2 0 ( ) a f +a f +2 2 n ( ) a f ( (( )) ) n 0 2 n 2 + ( ) 4 (t 2) a0 a a 2 + n 0 00 n 0 n 0 + ( ) 4 (t 2) (2n 00 n 0 ),

Pascal s Tiangle (mod 8) 59 as Hence (( a0 a a 2 0 )) n 0 n 00 n 0. N n (2, 8) n 0 + 2 n n 00 n 0 and Finally fo n 0 we have N n (t, 8) n 0 + 2 ( ) 4 (t+2) N n (6, 8) n 0 2 n n 00 + n 0. f 0 a f a f + a f +2 00 (( n 0 2 n 2 + ( ) 4 (t+2) a0 a a 2 0 0 (( )) al 2 a l a l + 0 f a f a f + a f +2 00 ( ) a f +a f +2 2 n )) (( al 2 a + l a l 0 0 }. ( ) a f Now as n 0 we have (( )) (( )) a0 a a 2 a0 a n 0 0 0 0 n 00 n 0, (( )) al 2 a l a l n 0 0 00 n 000 n 00 n 00 n 000, (( )) al 2 a l a l n 0 0 n 00 n 0 n 0 n 00, f a f a f + a f +2 00 ( ) a f f a f a f a f + a f +2 000 f a f a f a f + a f +2 00 )) n 000 n 00, so that (( a0 a a 2 0 0 + f a f a f + a f +2 00 )) (( al 2 a + l a l 0 0 ( ) a f n 0 + 2n 00. )) (( al 2 a l a l 0 )) Hence N n (t, 8) n 0 2 n 2 + ( ) 4 (t+2) ( n 0 + 2n 00 ) n 0 2 n n 00 2 n, if t 2, n 00 2 n, if t 6.

60 J. G. Huad et al. 5. EVALUATION OF N n (t, 8), t, 3, 5, 7 In this section we cay out the evaluation of N n (t, 8) fo t, 3, 5, 7 using the Davis Webb conguence (mod 8). THEOREM C(THIRD PART). Case n n n 0 n v s s i (i 2) N n (, 8) N n (3, 8) N n (5, 8) N n (7, 8) No. (i) 0 (ii) 0 0 0 2 n 0 0 0 (iii) 0 2 n 0 2 n 0 (iv) 0 0 (v) 0 0 0 2 n 0 0 2 n (vi) 0 2 n 0 0 2 n (vii) 2 some 2 (viii) 2 none 2 2 n 2 n 0 0 (ix) 0 0 3 (x), 2 some 2 (xi), 2 none 2 2 n 2 n 0 0 (xii) 0 some 2 (xiii) none 2 2 n 2 n 0 0 PROOF. It is easily checked that the theoem holds fo n 0,, 2, 3 (equivalently l 0, ). Hence we may assume that l 2. Fo t, 3, 5, 7 we have N n (t, 8) 0 ( n ) t (mod 8) 0 c(n,)0 ( n ) t (mod 8) b 0 ((,...,b l 0 a0 ( ) E 5 (b 0 +b ) a )) +E 2 t(mod 8), by Popositions and 2(a), and pat (a) of the Davis Webb conguence (mod 8). Set so that t ( ) α(t) 5 β(t) (mod 8). Hence α(t) (t )/2. β(t) (t 2 )/8, ( ) E 5 (b 0+b ) ( ( a 0 a ) ) +E 2 t (mod 8) (( a0 a E α(t) (mod 2), (b 0 + b ) )) + E 2 β(t) (mod 2). Thus N n (t, 8) 4 b 0,...,b l 0 + ( )α(t) 4 + ( )β(t) 4 + ( )α(t)+β(t) 4 ( ( + ( ) α(t) ( ) E ) + ( ) β(t) ( ) (b 0+b ) ( ( a 0 a ) ) ) +E 2 a 0,...,a l b 0,...,b l 0 b 0,...,b l 0 a 0,...,a l ( ) E ( ) (b 0+b ) ( ( a 0 a ) ) +E 2 b 0,...,b l 0 ( ) (b 0+b ) ( ( a 0 a ) ) +E +E 2.

Pascal s Tiangle (mod 8) 6 We teat the two cases a 0 a and a 0 a sepaately. If a 0 a then (( a 0 a )) 0 and appealing to Lemmas 3, 4 and 5, we obtain N n (t, 8) 2 n 2 ( ) + α(t) 2 n 2 }, if n 0 ( ) + β(t) 2 n 2 }, if n 0 n 0 0, if n > 0 0, if n 0 o n > 0 ( ) α(t)+β(t) 2 n 2, if n 0 n 0 and each s i o3 + 0, if n 0 n 0 and some s i 2; o n 0 > 0; o n > 0. Appealing to the case definitions given in the statement of the theoem we obtain the value of N n (t, 8). Cases (i), (iv), (xii). N n (t, 8) + 0 + 0 + 0. Case (ii). Hee n 0 so that each s i. N n (t, 8) 2 n 2 + ( ) α(t) 2 n 2 + ( ) β(t) 2 n 2 + ( ) α(t)+β(t) 2 n, if t, 0, if t 3, 5, 7. Case (iii). N n (t, 8) + ( ) α(t) 2 n, if t, 5, 0, if t 3, 7. Cases (v), (vi). Hee n > 0, n 0 implies that some s i 2. N n (t, 8) 2 n 2 + 0 + ( ) β(t) 2 n 2 2 n, if t, 7, + 0 0, if t 3, 5. Cases (vii), (viii), (ix). Hee v 0 and s 2 o 3 so that a 0 a, contadicting a 0 a. These cases cannot occu. Case (x). Hee v 0 and s o2.asa 0 a we have s. N n (t, 8) + 0 + 0 + 0. Case (xi) (Hee v 0 and s o2:asa 0 a we have s.) and Case (xiii). N n (t, 8) 2 n 2 + 0 + 0 + ( ) α(t)+β(t) 2 n 2 2 n, if t, 3, 0, if t 5, 7. If a 0 a, appealing to Lemmas 3, 6, and 7, we obtain ( ) α(t)+β(t) 2 n 2, if n 0 n 0, s 2, N n (t, 8) 2 n 2 + each s i (i 2) o3, 0, othewise. Cases (i), (iv), (ix), (x). N n (t, 8) + 0. Cases (ii), (iii). Hee a 0 a implies n > 0 so these cases cannot occu.

62 J. G. Huad et al. Case (v). Hee a 0 a implies v 0 so this case cannot occu. Case (vi). Hee a 0 a implies v 0 and s 2 so this case cannot occu. Case (vii). N n (t, 8) + 0. Case (xi) (Hee a 0 a implies v 0 and s 2.) and Case (viii). N n (t, 8) 2 n 2 + ( ) α(t)+β(t) 2 n 2 2 n, if t, 3, 0, if t 5, 7. Cases (xii), (xiii). Hee v > 0 contadicting a 0 a. These cases cannot occu. REFERENCES. K. S. Davis and W. A. Webb, Lucas theoem fo pime powes, Euop. J. Combinatoics, (990), 229 233. 2. K. S. Davis and W. A. Webb, Pascal s tiangle modulo 4, Fibonacci Quat., 29 (99), 79 83. 3. J. W. L. Glaishe, On the esidue of a binomial-theoem coefficient with espect to a pime modulus, Quat. J. Math., 30 (899), 50 56. 4. A. Ganville, Zaphod Beeblebox s bain and the fifty-ninth ow of Pascal s tiangle, Ame. Math. Monthly, 99 (992), 38 33. 5. E. E. Kumme, Übe die Eganzungssätze zu den allgemeinen Recipocitätsgesetzen, J. Reine Angew. Math., 44 (852), 93 46. 6. E. Lucas, Su les conguences des nombes euléiens et des coefficients difféentiels des fonctions tigonométiques, suivant un module pemie, Bull. Soc. Math. Fance, 6 (877 8), 49 54. Received 8 August 996 and accepted on 2 Mach 997 JAMES G. HUARD Depatment of Mathematics, Canisius College, Buffalo, NY 4208, USA E-mail: huad@canisius.edu BLAIR K. SPEARMAN Depatment of Mathematics and Statistics, Okanagan Univesity College, Kelowna, B.C. VV V7, Canada E-mail: bkspeam@okanagan.bc.ca KENNETH S. WILLIAMS Depatment of Mathematics and Statistics, Caleton Univesity, Ottawa, Ontaio KS 5B6, Canada E-mail: williams@math.caleton.ca