Research Article Weather Forecasting Using Sliding Window Algorithm

Similar documents
WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and Rainfall For Selected Arizona Cities

Global Climates. Name Date

YACT (Yet Another Climate Tool)? The SPI Explorer

Weather Prediction Using Historical Data

Champaign-Urbana 2000 Annual Weather Summary

Research Article The Application of Baum-Welch Algorithm in Multistep Attack

Short Term Load Forecasting Using Multi Layer Perceptron

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

SOIL MOISTURE MODELING USING ARTIFICIAL NEURAL NETWORKS

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson

Research Article Calculation for Primary Combustion Characteristics of Boron-Based Fuel-Rich Propellant Based on BP Neural Network

PROJECT REPORT (ASL 720) CLOUD CLASSIFICATION

Average temperature ( F) World Climate Zones. very cold all year with permanent ice and snow. very cold winters, cold summers, and little rain or snow

Application of Text Mining for Faster Weather Forecasting

Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region

OVERVIEW OF IMPROVED USE OF RS INDICATORS AT INAM. Domingos Mosquito Patricio

MISSION DEBRIEFING: Teacher Guide

WEATHER PREDICTION FOR INDIAN LOCATION USING MACHINE LEARNING

Champaign-Urbana 1999 Annual Weather Summary

U.S. Outlook For October and Winter Thursday, September 19, 2013

Champaign-Urbana 2001 Annual Weather Summary

Jackson County 2013 Weather Data

2015 Fall Conditions Report

GAMINGRE 8/1/ of 7

Changing Hydrology under a Changing Climate for a Coastal Plain Watershed

Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting

Sierra Weather and Climate Update

DESIGN AND DEVELOPMENT OF ARTIFICIAL INTELLIGENCE SYSTEM FOR WEATHER FORECASTING USING SOFT COMPUTING TECHNIQUES

Chapter-3 GEOGRAPHICAL LOCATION, CLIMATE AND SOIL CHARACTERISTICS OF THE STUDY SITE

Will a warmer world change Queensland s rainfall?

Determine the trend for time series data

Minnesota s Climatic Conditions, Outlook, and Impacts on Agriculture. Today. 1. The weather and climate of 2017 to date

Future Weather in Toronto and the GTA

Physical Features of Monsoon Asia. 192 Unit 7 Teachers Curriculum Institute 60 N 130 E 140 E 150 E 60 E 50 N 160 E 40 N 30 N 150 E.

Research Article Travel-Time Difference Extracting in Experimental Study of Rayleigh Wave Acoustoelastic Effect

Calculations Equation of Time. EQUATION OF TIME = apparent solar time - mean solar time

Study of Changes in Climate Parameters at Regional Level: Indian Scenarios

Third Grade Math and Science DBQ Weather and Climate/Representing and Interpreting Charts and Data - Teacher s Guide

2019 Settlement Calendar for ASX Cash Market Products. ASX Settlement

US Drought Status. Droughts 1/17/2013. Percent land area affected by Drought across US ( ) Dev Niyogi Associate Professor Dept of Agronomy

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015

Country Presentation-Nepal

Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem

STATISTICAL FORECASTING and SEASONALITY (M. E. Ippolito; )

Third Grade Math and Science DBQ Weather and Climate/Representing and Interpreting Charts and Data

Research Article Simplified Robotics Joint-Space Trajectory Generation with a via Point Using a Single Polynomial

MONTHLY RESERVOIR INFLOW FORECASTING IN THAILAND: A COMPARISON OF ANN-BASED AND HISTORICAL ANALOUGE-BASED METHODS

Analysis of Rainfall and Other Weather Parameters under Climatic Variability of Parbhani ( )

Lesson Adaptation Activity: Analyzing and Interpreting Data

peak half-hourly New South Wales

1. Introduction. 2. Artificial Neural Networks and Fuzzy Time Series

Champaign-Urbana 1998 Annual Weather Summary

Jackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center

UPDATE OF REGIONAL WEATHER AND SMOKE HAZE (December 2017)

STOCHASTIC MODELING OF MONTHLY RAINFALL AT KOTA REGION

Research Article Partial Pole Placement in LMI Region

Multivariate Regression Model Results

Climate also has a large influence on how local ecosystems have evolved and how we interact with them.

The 2010/11 drought in the Horn of Africa: Monitoring and forecasts using ECMWF products

Statistical Analysis of Temperature and Rainfall Trend in Raipur District of Chhattisgarh

Tracking the Climate Of Northern Colorado Nolan Doesken State Climatologist Colorado Climate Center Colorado State University

Analysis of Historical Pattern of Rainfall in the Western Region of Bangladesh

Global climate predictions: forecast drift and bias adjustment issues

Final Report. COMET Partner's Project. University of Texas at San Antonio

The Research of Urban Rail Transit Sectional Passenger Flow Prediction Method

DAILY QUESTIONS 28 TH JUNE 18 REASONING - CALENDAR

2003 Water Year Wrap-Up and Look Ahead

Research Article Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

Direct Normal Radiation from Global Radiation for Indian Stations

peak half-hourly Tasmania

Highlights of the 2006 Water Year in Colorado

Drought in Southeast Colorado

TILT, DAYLIGHT AND SEASONS WORKSHEET

El Nino 2015 in South Sudan: Impacts and Perspectives. Raul Cumba

SYSTEM BRIEF DAILY SUMMARY

Predicting Floods in North Central Province of Sri Lanka using Machine Learning and Data Mining Methods

Chapter 3. Regression-Based Models for Developing Commercial Demand Characteristics Investigation

NASA Products to Enhance Energy Utility Load Forecasting

P7.7 A CLIMATOLOGICAL STUDY OF CLOUD TO GROUND LIGHTNING STRIKES IN THE VICINITY OF KENNEDY SPACE CENTER, FLORIDA

Significant Rainfall and Peak Sustained Wind Estimates For Downtown San Francisco

Technical note on seasonal adjustment for M0

Research Article Two Mathematical Models for Generation of Crowned Tooth Surface

Alterations to the Flat Weight For Age Scale BHA Data Published 22 September 2016

Atmospheric circulation analysis for seasonal forecasting

Four Basic Steps for Creating an Effective Demand Forecasting Process

A Feature Based Neural Network Model for Weather Forecasting

ANN and Statistical Theory Based Forecasting and Analysis of Power System Variables

Published by ASX Settlement Pty Limited A.B.N Settlement Calendar for ASX Cash Market Products

Funding provided by NOAA Sectoral Applications Research Project CLIMATE. Basic Climatology Colorado Climate Center

Short Term Load Forecasting Based Artificial Neural Network

What is happening to the Jamaican climate?

LONG TERM LOAD FORECASTING OF POWER SYSTEMS USING ARTIFICIAL NEURAL NETWORK AND ANFIS

2017 Settlement Calendar for ASX Cash Market Products ASX SETTLEMENT

2018 Annual Review of Availability Assessment Hours

American International Journal of Research in Science, Technology, Engineering & Mathematics

Seasonal Climate Watch November 2017 to March 2018

Solar Activity during the Rising Phase of Solar Cycle 24

Memo. I. Executive Summary. II. ALERT Data Source. III. General System-Wide Reporting Summary. Date: January 26, 2009 To: From: Subject:

Local Ctimatotogical Data Summary White Hall, Illinois

A Hybrid Model of Wavelet and Neural Network for Short Term Load Forecasting

Transcription:

ISRN Signal Processing Volume 23, Article ID 5654, 5 pages http://dx.doi.org/.55/23/5654 Research Article Weather Forecasting Using Sliding Window Algorithm Piyush Kapoor and Sarabjeet Singh Bedi 2 KvantumInc.,Gurgaon22,India 2 MJP Rohilkhand University, Bareilly 2436, India Correspondence should be addressed to Piyush Kapoor; piyushkapoor7@yahoo.com Received 7 June 23; Accepted 9 August 23 Academic Editors: W.-L. Hwang and G. A. Tsihrintzis Copyright 23 P. Kapoor and S. S. Bedi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To predict the future s weather condition, the variation in the conditions in past years must be utilized. The probability that the weather condition of the day in consideration will match the same day in previous year is very less. But the probability that it will match within the span of adjacent fortnight of previous year is very high. So, for the fortnight considered for previous year a sliding window is selected of size equivalent to a week. Every week of sliding window is then matched with that of current year s week in consideration. The window best matched is made to participate in the process of predicting weather conditions. The prediction is made based on sliding window algorithm. The monthwise results are being computed for three years to check the accuracy. The results of the approach suggested that the method used for weather condition prediction is quite efficient with an average accuracy of 92.2%.. Introduction Weather forecasting is mainly concerned with the prediction of weather condition in the given future time. Weather forecasts provide critical information about future weather. There are various approaches available in weather forecasting, from relatively simple observation of the sky to highly complex computerized mathematical models. The prediction of weather condition is essential for various applications. Some of them are climate monitoring, drought detection, severe weather prediction, agriculture and production, planning in energy industry, aviation industry, communication, pollution dispersal, and so forth, []. In military operations, there is a considerable historical record of instances when weather conditions have altered the course of battles. Accurate prediction of weather conditions is a difficult task due to the dynamic nature of atmosphere. The weather condition at any instance may be represented by some variables. Out of those variables, one found that the most significant are being selected to be involved in the process of prediction. The selection of variables is dependent on the location for which the prediction is to be made. The variables and their range always varyfromplacetoplace.theweatherconditionofanydayhas some relationship with the weather condition existed in the same tenure of precious year and previous week. A statistical model is designed [2] that could predict the rainfall and temperature with the help of past data by making use of time-delayed feed forward neural network. Artificial neural network was combined with the genetic algorithm to get the more optimized prediction [3]. An improved technique that uses artificial neural network with photovoltaic system was proposed by Isa et al. [4] that utilizes perceptron model with Levenberg Marquardt algorithm. Apart from neural network Fuzzy logic has also been being used in weather prediction models. The rainfall was classified into three fuzzy sets which can be predicted by making use of simple fuzzy rules [5]. Also a fuzzy self-regression model was proposed by Lu Feng and Xu xiao Guang [6]whichmakesuse of the form of self-related sequence number according to observednumber.theself-relatedcoefficientswerecomputed by making use of Fuzzy Logic [7]. A combined approach of neural network with Fuzzy Logic is being proposed for the weather prediction system. The work has applied principle component analysis technique to the fuzzy data by making use of Autoassociative neural networks.

2 ISRN Signal Processing But the major shortcoming in the techniques proposed above that they utilized the previous weather conditions to predict the ones in future, but the underlying relationship that exists between previous data had not been being mathematically described and analyzed. The techniques using artificial neural networks (ANN) were only concerned with the adjustment of weights in order to get correct output from the given input. But no relationship among the data was mathematically defined. Also the ANN techniques suffered from anomalies like local minima, overfitting, and so forth. Another problem is that it is hard to decide how much trainingdataissufficienttoadjustweightssothatoptimalaccuracy of the predicted weather conditions can be achieved. The number of other techniques for weather forecasting that used regression with machine learning algorithms was proposed in [8, 9]. But a mathematical model that could represent the relationship among previous data that could be used for prediction is still desired. A new sliding window approach for the same is being proposed in this text for weather prediction. 2. Proposed Work 2.. Methodology. There is always a slightly variation in weather conditions which may depend upon the last seven days or so variation. Here variation refers to difference between previous day parameter and present day s parameter. Also there exists a dependency between the weather conditions persisting in current week in consideration and those of previous years. In this work a methodology is being proposed that could mathematically model these two types of dependency and utilize them to predict the future s weather conditions. To predict the day s weather conditions this work will take into account the conditions prevailing in previous week, thatis,inlastsevendayswhichareassumedtobeknown. Also the weather condition of seven previous days and seven upcoming days for previous year is taken into consideration. For instance if the weather condition of 6 November 22 is to be predicted then we will take into consideration the conditions from 9 November 22 to 5 November 22 and conditions from 9 November to 22 November 2 for previous years. Now in order to model the aforesaid dependencies the current year s variation throughout the week is being matched with those of previous years by making use of sliding window. The best-matched window is selected to make the prediction. The selected window and the current year s weekly variations are together used to predict the weather condition. The reason for applying sliding window matching is that the weather conditions prevailing in a year may not lie or fall on exactly the same date as they might have existed in previous years. That is why seven previous days and seven ongoing days are being considered. Hence a total period of fortnight is checked in previous condition to find the similar one. Sliding window is quite good technique to capture the variation that could match the current year s variation. 2.2. Sliding Window Algorithm. The work proposes to predict a day s weather conditions. For this the previous seven days weather is taken into consideration along with fortnight weather conditions of past years. Suppose we need to predict S. No. Max temp. 2 3 4 5 6 7 8 9 2 3 4 Min temp. Humidity Rainfall Figure : Sliding window concept where W represents Window number and W 2 represent window number 2. weatherof23rdaugust23thenwewilltakeintoconsideration the weather conditions of 6th August 23 to 22nd August 23 along with the weather conditions prevailing in thespanof6thaugustto29thaugustinpastyears.then the day by day variation in current year is computed. The variation is also being computed from the fortnight data of previous year. In this work the four major weather parameters will be taken into consideration, that is, maximum temperature, minimum temperature, Humidity and Rainfall. Hence thesizeofthevariationofthecurrentyearwillberepresented by matrix of size 7 4.Andsimilarlyforpastyearthematrix size would be 4 4. Now, the first step is to divide the matrix of size 4 4 into the sliding windows. Hence, 8 sliding windows can be made of size 7 4each. The concept of sliding window is shown in Figure. Now the next step is to compare every window with the current year s variation. The best-matched window is selected for making the prediction. The Euclidean distance approach isusedforthepurposeofmatching.thereasonfortaking Euclidean distance is its power to represent similarity in spite of its simplicity. Following are the parameters used for the weather condition prediction: () mean: mean of day s weather conditions, that is, maximum temperature, minimum temperature, humidity, and rainfall. After adding each separately, and divide by total day s number Mean = W W 2 Sum of parameter number of days, () (2) variation: calculate day by day variation after taking difference of each parameter. This tells how the next day s Weather is related to previous day s weather; (3) euclidean distance: it compares data variation of current year and previous year. Bythisweareabletomathematicallymodeltheaforesaid defined dependencies. That the relationship between previous year and previous week data is being defined mathematically can be used to predict the future conditions.

ISRN Signal Processing 3 Step. Take matrix CD of last seven days for current year s data of size 7 4. Step 2. Take matrix PD of fourteen days for previous year s data of size 4 4. Step 3. Make 8 sliding windows of size 7 4each from the matrix PD as W,W 2,W 3,...,W 8 Step 4. Compute the Euclidean distance of each sliding window with the matrix CD as ED, ED 2, ED 3,...,ED 8 Step 5.SelectmatrixW i as W i = Correponding Matrix (Min.(ED i )) i [, 8] Step 6.Fork =ton (i) For WC k compute the variation vector for the matrix CD of size 6 as VC. (ii) For WC k compute the variation vector for the matrix PD of size 6 as VP. (iii) Mean =Mean(VC) (iv) Mean 2 =Mean(VP) (v) Variation V =(Mean + Mean 2 )/2 (vi) Add V to the previous day s weather condition in consideration to get the predicted condition. Step 7. End Algorithm The sliding window used for predicting the n number of weather conditions (WC, WC 2, WC 3,...,WC n ) is shown in Algorithm. The main logic behind using sliding window approach is that the weather conditions prevailing at some span of day in the year might not have existed in the same span of days in previous year. For instance the weather condition in first week of February 2 might not have existed in the first week of February in 29. The similar weather conditions might have prevailed in previous year but not necessarily in same week but in some days. The probability of finding the similar weather conditions are maximum at the considered fortnight spam. 3. Results and Discussion The previous algorithm is being tested against weather data fortheyears26to2ofthechampawatcity,uttaranchal. The data has been taken from Pantnagar Weather Forecasting Centre. The algorithm has been executed and tested in Matlab 2a version. Thus, in the algorithm in consideration thepreviousyear sdataisbeingutilizedforpredictingthe weather conditions. Hence, the algorithm is tested to predict weather condition for three years, that is, 28 2, which is being tested against the available data. Also it can be concludedthatlearningapproachusedinthealgorithmis supervised. In the test four weather conditions are taken into consideration, that is, minimum temperature, maximum temperature, humidity and rainfall. Temperature, in general, canbemeasuredtoahigherdegreeofaccuracyrelativetoany of the other weather variables. The data of these four factors aretakendaywiseforthepreviouslymentionedfouryears. The algorithm is also being tested daywise. Figures 2, 3, 4, and5 show the variation of actual and predicted four weather conditions for the year 2 day wise. These graphs clearly shows least variation among the actual and predicted weather conditions. The monthwise accuracy of predicted weather conditions is being given in Table. 35 3 25 2 5 5 5 6 3 46 6 76 9 6 2 36 5 66 8 96 2 226 24 256 27 286 3 36 33 346 36 Actually Max temp Figure 2: A graph representing predicated versus actual maximum temperature for year 2. Table Month Accuracy of predicted data Jan 97.24% Feb 88.94% Mar 92.25% Apr 98.7% May 93.49% Jun 99.2% Jul 87.9% Aug 78.83% Sep 79.23% Oct 94.35% Nov 98.78% Dec 95.73%

4 ISRN Signal Processing 3 25 2 5 5 5 42 83 24 65 26 247 288 329 Original Figure 3: A graph representing predicated versus actual minimum temperature for the year 2. 8 7 6 5 4 3 2 42 83 24 65 26 247 288 329 2 Original Figure 4: A graph representing predicated versus actual humidity for the year 2. The above result of weather conditions have been from an Indian city. India has a typically tropical type of weather, that is, the weather which has all varieties. The Champawat city lies in the state of Uttaranchal which lies in the planes of Ganges. The monthwise accuracy in Table can be understood by the following facts. The months of April, May, and June are considered to be of summers which correspond to high temperature. The months of November, December, and January are winters having low or cold temperature conditions. Thus, the factors like temperature are quite fixed in these months and hence the accuracy for these is also high. In contrast the months like February, March, August, and September are considered to be the months when weather changes,thatis,aphaseoftransitionfromoneseasonto another. In the months of February and March, the winter season is shifted to summer. And in the month of August and September, the summer is getting over and, winter starts 2 8 6 4 2 2 4 3 59 88 7 46 75 24 233 262 29 32 Original Figure 5 Figure 5: A graph representing predicated versus actual rain for the year 2. coming. And hence the weather condition becomes highly unpredictableinthesemonths.alsoitisobservedthatthe weather conditions vary greatly in these months from year to year. This is also being reflected in the results. 4. Conclusion and Future Work The comparison of weather condition variation using sliding window approach has been found to be highly accurate except for the months of seasonal change where conditions are highly unpredictable. The results can be altered by changing the size of the window. Accuracy of the unpredictable months can be increased by increasing the window size to one month. Since ANN techniques are very good in mapping Inputs and outputs, the sliding window algorithm if incorporated with ANN could improve the results drastically even for the months of seasonal change. References [] Y. Radhika and M. Shashi, Atmospheric temperature prediction using support vector machines, Computer Theory and Engineering, vol.,no.,pp.793 82, 29. [2]L.L.Lai,H.Braun,Q.P.Zhangetal., Intelligentweather forecast, in Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 426 422, Shanghai, China, August 24. [3] J. Gill, B. Singh, and S. Singh, Training back propagation neural networks with genetic algorithm for weather forecasting, in Proceedings of the 8th IEEE International Symposium on Intelligent Systems and Informatics (SIISY ), pp. 465 469, September 2. [4]I.S.Isa,S.Omar,Z.Saad,N.M.Noor,andM.K.Osman, Weather forecasting using photovoltaic system and Neural Network, in Proceedings of the 2nd International Conference 349

ISRN Signal Processing 5 on Computational Intelligence, Communication Systems and Networks,pp.96,July2. [5]L.Zuoyong,C.Zhenpei,andL.Jitao, Amodelofweather forecast by fuzzy grade statistics, Fuzzy Sets and Systems, vol. 26, no. 3, pp. 275 28, 988. [6] L.F.LuFengandX.X.G.XuxiaoGuang, Aforecastingmodel of fuzzy self-regression, Fuzzy Sets and Systems, vol. 58, no. 2, pp.239 242,993. [7] T. Denoeux and M.-H. Masson, Principal component analysis of fuzzy data using autoassociative neural networks, IEEE Transactions on Fuzzy Systems,vol.2,no.3,pp.336 349,24. [8] R. Collobert and S. Bengio, SVMTorch: support vector machines for large-scale regression problems, Machine Learning Research,vol.,no.2,pp.43 6,2. [9] P.-S. Yu, S.-T. Chen, and I.-F. Chang, Support vector regression for real-time flood stage forecasting, Hydrology,vol. 328, no. 3-4, pp. 74 76, 26.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration