s = rθ Chapter 10: Rotation 10.1: What is physics?

Similar documents
5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Chapter 3: Vectors and Two-Dimensional Motion

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Field due to a collection of N discrete point charges: r is in the direction from

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Chapters 2 Kinematics. Position, Distance, Displacement

PHYS 1443 Section 001 Lecture #4

Motion in Two Dimensions

Physics 1501 Lecture 19

Physics 207 Lecture 16


Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Dynamics of Rotational Motion

Physics 201 Lecture 15

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

PHY126 Summer Session I, 2008

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Name of the Student:

24-2: Electric Potential Energy. 24-1: What is physics

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Physics 111 Lecture 11

PHYS PRACTICE EXAM 2

WebAssign HW Due 11:59PM Tuesday Clicker Information

Physics 1: Mechanics

2 shear strain / L for small angle

N 1. Time points are determined by the

CHAPTER 10: LINEAR DISCRIMINATION

( ) () we define the interaction representation by the unitary transformation () = ()

Chapter Fifiteen. Surfaces Revisited

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Chapter 6 Plane Motion of Rigid Bodies

Relative and Circular Motion

Physics 201 Lecture 18

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy

UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING. Objectives

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

PHY121 Formula Sheet

CHAPTER 2 Quick Quizzes

Rotary motion

Lecture 5. Plane Wave Reflection and Transmission

Dynamics of Rigid Bodies

Chapter 13 - Universal Gravitation

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

Mechanics Physics 151

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

Mechanics Physics 151

Rotational Motion: Statics and Dynamics

Exam 3: Equation Summary

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Spring 2002 Lecture #13

SCIENCE CHINA Technological Sciences

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

Physics 1114: Unit 5 Hand-out Homework (Answers)

CHAPTER 13 LAGRANGIAN MECHANICS

1 Constant Real Rate C 1

Chapter Finite Difference Method for Ordinary Differential Equations

ESS 265 Spring Quarter 2005 Kinetic Simulations

Homework 8: Rigid Body Dynamics Due Friday April 21, 2017

Example: MOSFET Amplifier Distortion

One-dimensional kinematics

Remember: When an object falls due to gravity its potential energy decreases.

Chapter Lagrangian Interpolation

Review. Physics 231 fall 2007

( ) rad ( 2.0 s) = 168 rad

Reflection and Refraction

Radial Motion of Two Mutually Attracting Particles

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

Density Matrix Description of NMR BCMB/CHEM 8190

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Physics 1A (a) Fall 2010: FINAL Version A 1. Comments:

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

19 The Born-Oppenheimer Approximation

Rotations.

Mechanics Physics 151

Physics 207 Lecture 13

THE PHYSICS BEHIND THE SODACONSTRUCTOR. by Jeckyll

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9


Exam 3: Equation Summary

Response of MDOF systems

8. HAMILTONIAN MECHANICS

EN221 - Fall HW # 7 Solutions

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

Scattering at an Interface: Oblique Incidence

Two Coupled Oscillators / Normal Modes

Simple Harmonic Mo/on. Mandlebrot Set (image courtesy of Wikipedia)

Physics 120 Spring 2007 Exam #1 April 20, Name

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

Section 26 The Laws of Rotational Motion

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Rotation: All around us: wheels, skaters, ballet, gymnasts, helicopter, rotors, mobile engines, CD disks, Atomic world: electrons spin, orbit.

m1 m2 M 2 = M -1 L 3 T -2

Ch 13 Universal Gravitation

Solution in semi infinite diffusion couples (error function analysis)

Transcription:

Chape : oaon Angula poson, velocy, acceleaon Consan angula acceleaon Angula and lnea quanes oaonal knec enegy oaonal nea Toque Newon s nd law o oaon Wok and oaonal knec enegy.: Wha s physcs? In pevous chapes we have dscussed he anslaonal moon In hs chape we wll dscuss he moon when objec un abou an axs (oaonal Moon) Vaables n oaonal moon ae analogous o hose o anslaonal moon wh ew changes We wll Dscuss he quanes n angula vaables (we wll ocus on he angle when objec oang) nd he angula poson, velocy, and acceleaon. Apply Newon second law bu nsead o oce and mass we wll use oque and oaonal nea. Apply enegy conceps o angula quanes lke wok knec enegy heoem.: oaonal vaables We wll ocus on oaon o a gd body abou a xed axs gd body: body ha can oae wh all s pas packed ogehe whou any change n s shape Fxed axs: oaon abou an axs ha does no move Fgue shows a gd body o abay shape n pue oaon abou he z- axs o a coodnae Sysem evey pon o he body moves n a ccle whose cene les on he axs o oaon (see he abay eeence lne), and evey pon moves hough he same angle dung a pacula me neval.: oaonal vaables: Consde a pacle on gd objec a pon p oaes hough an angle θ As objec oaes, he pon P make an Ac lengh s Angula poson θ s s θ n adans (ad.) o evoluon adans: ao beween he wo lengh s and dmensonless quany When s θ ad. 57.3.(دورة) Full ccle 36 π ad. evoluon whee π /7 3. we can conve beween ad. and degee om he coelaon: Degee ad. 36 π π θ (ad) θ (deg) θ?? 36

.: oaonal vaables Angula dsplacemen: Aveage angula speed: θ θ θ θ ωavg (ad/s) s - (ad.) As pacle moves om angula poson θ o θ.: oaonal vaables: Example Insananeous angula speed: dθ ω lm d (ad/s) s - Aveage angula ω ω ω α avg acceleaon: (ad/s²) s - Insananeous ω dω angula α lm (ad/s²) s acceleaon: d - All pacles o a gd objec oae a he same angula dsplacemen, speed and acceleaon. θ ω 7 ev/mn 9 6 cm θ.: oaonal vaables: Example A chld s op s spun wh angula acceleaon A, he op has angula velocy 5 ad/s, and a eeence lne on s a angula poson (θ ) θ ad. Fnd (a) angula velocy ω a he op a any me (b) angula poson θ a any me a) ω αd b) ω ω (5 ) d 5 ω 5 5 ω + 5 3 ωd θ θ 5 ( 5 3 θ + 5 3 5 3 θ + 5 + 3 + 5) d.3: ae angula quanes vecos? ω Angula velocy ω, s a veco can be wen as Fo oaon abou a xed axs, he decon o he angula velocy s along he axs o oaon. Use he gh hand ule o deemne decon. Also angula acceleaon α s a veco quany can be wen α havng same ules o decon and same ules o speedng up oaon o slowng down oaon Fo oaon couneclockwse (بعكس عقارب الساعة ( +ve ω Fo oaon clockwse (مع عقارب الساعة ( -ve ω

.: oaon wh consan angula acceleaon Fo oaonal moon wh consan oaonal acceleaon α The equaons o moon ae smla n o he equaon o moon n one dmenson (D); Only do he ollowng symbol eplacemen x θ v ω a α.: oaon wh consan angula acceleaon Lnea (D) Moon wh consan lnea acceleaon, a v v + a x ) x x x ( v + ) x + ( v + v x ( v + x x v) x v + a v v + a x oaonal Moon wh consan oaonal acceleaon, α ω ω + α θ θ + + ( ω ω θ θ + ω + α ( ω ω ) ω ω + α ).: oaon wh consan angula acceleaon: Example α.: oaon wh consan angula acceleaon: Example: connued om pevous slde α 3.5ad, s, ω. ad s,?, evoluons?, ω?.s ev. ad.75 ev. π ad. α 3.5ad, s, ω. ad?, evoluons?, ω? s,.s 3

.: oaon wh consan angula acceleaon: Example Whle you ae opeang a oo cylnde, he angula velocy o he cylnde om 3. ad/s o. ad/s n ev., a consan angula acceleaon. Fnd (a) he angula acceleaon (b) me o decease he angula speed. We have ω 3. ad/s ω ad/s ev. a) π ad. ω + α wh ev.( ) 5.7 ad ev. ω ω α b) ω ω + α.56 ω ω α.3ad/s² 5. α 3. 6.7s. 3 ω..5: elang The Lnea And Angula Vaables Fo a oang objec, boh lnea and angula quanes ae smulaneously exs hee mus be a elaon beween hem Ac lengh s: Tangenal speed o a pon P: Tangenal acceleaon o a pon P: Cenpeal acceleaon o oaon objec: Magnude o oal acceleaon s θ v ω a α v a ω a a + a oaonal axs - ou o page oaonal axs - ou o page A ace ca acceleaes consanly om a speed o m/s o 6 m/s n 5 s aound a ccula ack o adus m. When he ca eaches a speed o 5 m/s nd he (a) Angula speed (b) Cenpeal acceleaon, Tangenal acceleaon, and angula acceleaon (d) The magnude o he oal acceleaon. v We have 5s, v m/s ω.ad v 6 m/s ω.5ad a v 5 m/s nd ω?, a c?, a?, a o? v 5 a) v ω ω.5 ad/s b).5: elang The Lnea And Angula Vaables: Example v (5) a c 6.5 m/s o ac ω (.5) 6.5 m/s.5: elang The Lnea And Angula Vaables: Example: connued om pevous slde We have 5s, v m/s ω.ad, v 6 m/s ω.5ad a v 5 m/s a?, a o? c) Fom lnea quanes we can nd he lnea acceleaon a v v 6 v v + a a m/s 5 a a α α.ad./ s O om angula quanes we can nd angula acceleaon α ω ω.5. ω ω + α α.ad 5 a α (.) m c) The oal acceleaon a a c + a 6.5 + 7. m/s

.6: Knec Enegy O oaon a collecon o n pacles oang abou a xed axs has a oaonal knec enegy o: n n K mv m ω v s he lnea speed o pacle K Iω whee I s he momen o nea o oaonal nea: (kg.m (o collecon o pacles) ) s he dsance om oaonal axs I m (J) Mahemacally, Smla n shape o lnea K wh he ollowng eplacemens I m, ω v.6: Knec Enegy O oaon: Example Sphees o mass m has I because, hey le on y-axs.6: Knec Enegy O oaon: Example: connued om pevous slde.7: Calculang he oaonal nea o collecon o pacles, we had: Fo an exended, gd objec: I I m dm o m mρv dm ρdv mσa dmσda mλl dmλdl I dm ρdv I m I ρ dv 5

.7: Calculang he oaonal nea: Example.7: Calculang he oaonal nea: Momens o nea o vaous objecs I CM : Momen o nea abou an axs o oaon hough he cene o mass Exended objec ; λdlλdx (L s on x-axs) and.7: Calculang he oaonal nea: Paallel axs heoem I I CM s known, he momen o nea hough a paallel axs o oaon a dsance h away om he cene o mass s: I ICM + Mh I I I CM + Mh L ML + M ML 3.8: Toque Fsnφ φ F Fcosφ φ Is angle beween F and decons.(نقطة ارتكاز) Consde a gd objec abou a pvo pon A oce s appled o he objec. Ths oce causes he objec o oae havng wha s called Toque τ. τ F snφ 6

Toque and Angula Acceleaon.8: Toque consde a pacle o mass m oang a bou a xed axs unde an nluence o appled oce F The componen F does no oque snce (an-paallel o ) he angen componen F has a oque τ F (sn 9 ) bu F ma and a α τ F m α τ Iα I moe han one oce appled o he objec τ τ ne Iα Newon s second law n oaon.8: Toque: Example Two oces T and T ae appled as shown Fo oaon couneclockwse (بعكس عقارب الساعة) +ve α Fo oaon مع عقارب ( clockwse -ve α (الساعة α? a? T?.8: Example: a unom dsk, wh mass M.5 kg and adus cm, mouned on a xed hozonal axle. A block wh mass m. kg hangs om a massless cod ha s wapped aound he m o he dsk. Fnd he acceleaon o he allng block, he angula acceleaon o he dsk, and he enson n he cod. The cod does no slp, and hee s no con a he axle. a wh I M (.5)(.).5kg. m a.8m, T 6N, and α ad.8: Example: A unom od o lengh L and mass M s aached as shown. The od s eleased om es n he hozonal poson. Wha ae he nal angula acceleaon o he od and he nal anslaonal acceleaon o s gh end? α? and a? * The ode wll move lke pendulum unde he eec o F g Mg Exended objec look a he CM soluon L τ F sn φ F ( ) Mg L bu τ Iα ( ) Mg τ ( L / ) Mg 3g α I / 3ML L a The anslaonal acceleaon s 7

.8: Wok and oaonal Knec Enegy Wok n lnea moon dw F ds W F s dw P F. v d Wok n oaonal moon dw F ds dw τdθ W τ P τω.8: Wok and oaonal Knec Enegy: Wok Knec Enegy heoem The wok-knec enegy heoem o lnea moon: W mv mv Exenal wok done on an objec changes s knec enegy and o oaonal moon: W Iω Iω K Exenal oaonal wok done on an objec changes s oaonal knec enegy.8: Wok and oaonal Knec Enegy: Example In pevous example o dsk, he dsk sa om es a me. Wha s s oaonal knec enegy K a.5 s? Fom pevous example we have I M (.5)(.).5kg. m a.8m, T 6N, and α ad K Iω We need o nd ω a.5s ω ω + α + (.5) 6 ad/s K Iω M.5 kg,adus cm, and m. kg (.5)(6) 9J.8: Wok and oaonal Knec Enegy: Example: connued om pevous slde K K W K ω + α K τ ( ) We need o nd τ and τ T (. )( 6 ). N.m K + ()(. 5) τ (.)(75) 9J M.5 kg,adus cm, and m. kg o 75ad 8

evew Lnea quanes have analogous angula counepas. evew Objec oang make boh lnea and angula quanes a same nsan hee s a elaon wh angula and lnea quanes Toque s he endency o a oce o oae an objec. The oal knec enegy o a oang objec has o nclude s oaonal knec enegy. 9