The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Similar documents
Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

The Devices. Jan M. Rabaey

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 4: CMOS Transistor Theory

The Devices: MOS Transistors

MOSFET: Introduction

Integrated Circuits & Systems

EE5311- Digital IC Design

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

MOS Transistor I-V Characteristics and Parasitics

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

The Devices. Devices

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

Lecture 3: CMOS Transistor Theory

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

MOS Transistor Properties Review

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Lecture 04 Review of MOSFET

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

ECE 342 Electronic Circuits. 3. MOS Transistors

Practice 3: Semiconductors

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

EE105 - Fall 2006 Microelectronic Devices and Circuits

MOS Transistor Theory

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

ECE 497 JS Lecture - 12 Device Technologies

VLSI Design I; A. Milenkovic 1

MOS Transistor Theory

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Lecture 5: CMOS Transistor Theory

EE105 - Fall 2005 Microelectronic Devices and Circuits

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Chapter 4 Field-Effect Transistors

VLSI Design The MOS Transistor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Lecture 12: MOSFET Devices

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

VLSI Design and Simulation

CMOS Inverter (static view)

Lecture 11: MOS Transistor

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Digital Integrated Circuits

Introduction and Background

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

ECE 546 Lecture 10 MOS Transistors

FIELD-EFFECT TRANSISTORS

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

EE 560 MOS TRANSISTOR THEORY

Lecture 11: MOSFET Modeling

Lecture 12: MOS Capacitors, transistors. Context

ECE-305: Fall 2017 MOS Capacitors and Transistors

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

MOSFET Physics: The Long Channel Approximation

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Long-channel MOSFET IV Corrections

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Section 12: Intro to Devices

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Microelectronics Part 1: Main CMOS circuits design rules

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

EECS130 Integrated Circuit Devices

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Semiconductor Physics fall 2012 problems

MOSFET Capacitance Model

Nanoscale CMOS Design Issues

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Metal-oxide-semiconductor field effect transistors (2 lectures)

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Chapter 5 MOSFET Theory for Submicron Technology

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

EE382M-14 CMOS Analog Integrated Circuit Design

2.CMOS Transistor Theory

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

The Physical Structure (NMOS)

ECE321 Electronics I

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Transcription:

Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002

Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models for SPICE simulation Analysis of secondary and deep-submicron effects Future trends

The Diode B Al A SiO 2 p n Cross-section of pn-junction in an IC process A p n B One-dimensional representation Al A B diode symbol Mostly occurring as parasitic element in Digital ICs

Depletion Region hole diffusion electron diffusion p n (a) Current flow. hole drift electron drift Charge Density - + x Distance (b) Charge density. Electrical Field x (c) Electric field. Potential V -W 1 W 2 x (d) Electrostatic potential.

Diode Current

Forward Bias p n (W 2 ) p n0 L p n p0 p-region -W 1 0 W 2 n-region x diffusion Typically avoided in Digital ICs

Reverse Bias p n0 n p0 p-region -W 1 0 W 2 n-region x diffusion The Dominant Operation Mode

Models for Manual Analysis V D + I D = I S (e V D/ T 1) V D + + I D V Don (a) Ideal diode model (b) First-order diode model

Junction Capacitance

Diffusion Capacitance

I D (A) Secondary Effects 0.1 0 0.1 25.0 15.0 5.0 0 5.0 V D (V) Avalanche Breakdown

Diode Model R S + V D - I D C D

SPICE Parameters

What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S R on D

The MOS Transistor Polysilicon Aluminum

MOS Transistors - Types and Symbols D D G G S NMOS Enhancement D NMOS S Depletion D G G B PMOS S Enhancement S NMOS with Bulk Contact

Threshold Voltage: Concept S - V GS + G D n+ n+ n-channel p-substrate Depletion Region B

The Threshold Voltage

The Body Effect 0.9 0.85 0.8 0.75 0.7 V T (V) 0.65 0.6 0.55 0.5 0.45 0.4-2.5-2 -1.5-1 -0.5 0 V BS (V)

I D (A) Current-Voltage Relations A good ol transistor -4 x 10 6 VGS= 2.5 V 5 4 Resistive Saturation VGS= 2.0 V 3 2 V DS = V GS - V T VGS= 1.5 V Quadratic Relationship 1 VGS= 1.0 V 0 0 0.5 1 1.5 2 2.5 V DS (V)

Transistor in Linear S V GS G V DS D I D n + V(x) + n + L x p-substrate B MOS transistor and its bias conditions

Transistor in Saturation V GS G V DS > V GS - V T S D n+ - V GS - V T + n+ Pinch-off

Current-Voltage Relations Long-Channel Device

A model for manual analysis

I D (A) Current-Voltage Relations The Deep-Submicron Era 2.5 x 10-4 2 Early Saturation VGS= 2.5 V 1.5 VGS= 2.0 V 1 VGS= 1.5 V Linear Relationship 0.5 VGS= 1.0 V 0 0 0.5 1 1.5 2 2.5 V DS (V)

u n (m/s) Velocity Saturation u sat = 10 5 Constant velocity Constant mobility (slope = µ) c = 1.5 (V/µm)

Perspective I D Long-channel device V GS = V DD Short-channel device V DSAT V GS - V T V DS

I D (A) I D (A) I D versus V GS 6 x 10-4 2.5 x 10-4 5 4 quadratic 2 1.5 linear 3 2 1 1 0 0 0.5 1 1.5 2 2.5 V GS (V) Long Channel 0.5 quadratic 0 0 0.5 1 1.5 2 2.5 V GS (V) Short Channel

I D (A) I D (A) I D versus V DS 6 x 10-4 5 4 VGS= 2.5 V Resistive Saturation VGS= 2.0 V 2 1.5-4 2.5 x 10 VGS= 2.5 V VGS= 2.0 V 3 2 V DS = V GS - V T VGS= 1.5 V 1 VGS= 1.5 V 1 VGS= 1.0 V 0.5 VGS= 1.0 V 0 0 0.5 1 1.5 2 2.5 V DS (V) Long Channel 0 0 0.5 1 1.5 2 2.5 V DS (V) Short Channel

A unified model for manual analysis G S D B

I D (A) Simple Model versus SPICE 2.5 x 10-4 V DS =V DSAT 2 1.5 Velocity Saturated Linear 1 0.5 V DSAT =V GT V DS =V GT Saturated 0 0 0.5 1 1.5 2 2.5 V DS (V)

I D (A) A PMOS Transistor 0 x 10-4 VGS = -1.0V -0.2 VGS = -1.5V -0.4-0.6-0.8 VGS = -2.0V VGS = -2.5V Assume all variables negative! -1-2.5-2 -1.5-1 -0.5 0 V DS (V)

Transistor Model for Manual Analysis

The Transistor as a Switch V GS V T S R on I D D V GS = V DD R mid R 0 V DD /2 V DD V DS

The Transistor as a Switch

The Transistor as a Switch

MOS Capacitances Dynamic Behavior

Dynamic Behavior of MOS Transistor G C GS C GD S D C SB C GB C DB B

The Gate Capacitance Polysilicon gate Source n + x d x d W Drain n + L d Top view Gate-bulk overlap t ox Gate oxide n + L n + Cross section

Gate Capacitance G G G S C GC C GC C GC D S D S D Cut-off Resistive Saturation Most important regions in digital design: saturation and cut-off

Gate Capacitance WLC ox C GC WLC ox C GC 2WLC ox WLC ox 2 C GC B C GCS = C GCD WLC ox 2 C GCS C GCD 3 V GS 0 V DS /(V GS -V T ) 1 Capacitance as a function of VGS (with VDS = 0) Capacitance as a function of the degree of saturation

Gate Capacitance (F) Measuring the Gate Cap I V GS 10 9 8 7 6 5 4 3 3 10 2 16 2 2 2 2 1.52 1 2 0.5 0 0.5 1 1.5 2 V GS (V)

Diffusion Capacitance Channel-stop implant N A 1 Side wall W Source N D Bottom x j L S Side wall Substrate N A Channel

Junction Capacitance

Linearizing the Junction Capacitance Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

Capacitances in 0.25 mm CMOS process

The Sub-Micron MOS Transistor Threshold Variations Subthreshold Conduction Parasitic Resistances

Threshold Variations V T V T Long-channel threshold Low V DS threshold Threshold as a function of the length (for low V DS ) L V DS Drain-induced barrier lowering (for low L)

I D (A) Sub-Threshold Conduction 10-2 10-4 Linear The Slope Factor I D ~ I 0 e qv nkt GS, n 1 C C D ox 10-6 10-8 Quadratic S is DV GS for I D2 /I D1 =10 10-10 Exponential 10-12 V T 0 0.5 1 1.5 2 2.5 V GS (V) Typical values for S: 60.. 100 mv/decade

Sub-Threshold I D vs V GS qvgs nkt I D I0e 1 e qv kt DS V DS from 0 to 0.5V

Sub-Threshold I D vs V DS I D I 0 e qv nkt GS 1 e qv kt DS 1 V DS V GS from 0 to 0.3V

Summary of MOSFET Operating Regions Strong Inversion V GS > V T Linear (Resistive) V DS < V DSAT Saturated (Constant Current) V DS V DSAT Weak Inversion (Sub-Threshold) V GS V T Exponential in V GS with linear V DS dependence

Parasitic Resistances G Polysilicon gate L D Drain contact V GS,eff S D W R S R D Drain

Latch-up

Future Perspectives 25 nm FINFET MOS transistor