Astronomy, Astrophysics, and Cosmology

Similar documents
Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

ASTR 200 : Lecture 22 Structure of our Galaxy

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

Chapter 10 Measuring the Stars

Astronomy 150: Killer Skies. Lecture 20, March 7

Guiding Questions. Measuring Stars

Chapter 9: Measuring the Stars

Light. Geometric Optics. Parallax. PHY light - J. Hedberg

Beyond Our Solar System Chapter 24

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

Lecture 16 The Measuring the Stars 3/26/2018

Astronomy 1143 Final Exam Review Answers

Midterm Study Guide Astronomy 122

Useful Formulas and Values

The Scale of the Cosmos

The Scale of the Cosmos

V. Astronomy Section

OPTION E, ASTROPHYSICS TEST REVIEW

Temperature, Blackbodies & Basic Spectral Characteristics.

15.1 Properties of Stars

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe

OPTION E, ASTROPHYSICS TEST REVIEW

Chapter 11 Surveying the Stars

Side View. disk mostly young stars and lots of dust! Note position of the Sun, just over half way out. This Class (Lecture 28): More Milky Way

Modern Astronomy Review #1

Astronomy: Universe at a Glance, Ch. 1a

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion).

Stellar Astrophysics: The Continuous Spectrum of Light

Parallax: Measuring the distance to Stars

D. A system of assumptions and principles applicable to a wide range of phenomena that has been repeatedly verified

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Cosmology. Stellar Parallax seen. The modern view of the universe

PHY2083 ASTRONOMY. Dr. Rubina Kotak Office F016. Dr. Chris Watson Office S036

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

Observational Astronomy - Lecture 8 Stars I - Distances, Magnitudes, Spectra, HR Diagram

Galaxies: The Nature of Galaxies

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax

Astronomy Exam 3 - Sun and Stars

IB Physics - Astronomy

Observational Astronomy Astro-25. Professor Meyer-Canales Saddleback College

Characterizing Stars

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

HUBBLE SPACE TELESCOPE

Surveying the Milky Way

Structure & Evolution of Stars 1

Ast 241 Stellar Atmospheres and Interiors

Stellar Composition. How do we determine what a star is made of?

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

FXA UNIT G485 Module Structure of the Universe. Δλ = v λ c CONTENTS OF THE UNIVERSE. Candidates should be able to :

Determining the Properties of the Stars

Stellar Astronomy Sample Questions for Exam 3

Chapter 24. Stars, Galaxies & the Universe. Distance units

Distance and Size of a Celestial Body

What is the solar system?

CHAPTER 28 STARS AND GALAXIES

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

Astronomy II (ASTR-1020) Homework 2

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

COLOR MAGNITUDE DIAGRAMS

The Universe and Galaxies

Clusters and constellations

Galaxies and the expansion of the Universe

Stars and Galaxies 1

NSCI 314 LIFE IN THE COSMOS

Cosmic Landscape Introduction Study Notes

Properties of Stars (continued) Some Properties of Stars. What is brightness?

Stars, Galaxies & the Universe Lecture Outline

Introduction To Modern Astronomy I: Solar System

Measuring Distances. Taking the Measure of the Universe

Astronomy 1 Fall 2016

Chapter 15: Surveying the Stars

Abstracts of Powerpoint Talks - newmanlib.ibri.org - Stars & Galaxies. Robert C. Newman

Betelgeuse and Rigel are two super giants in the constellation of Orion. Constellation: Stellar cluster:...


301 Physics 1/20/09. The Family of Stars. Chapter 12. Triangulation. Trigonometric Parallax. Course/Syllabus Overview Review of 301 stuff Start Ch.

LESSON 1. Solar System

TEK 8 Test Review. 15. Galaxies are best described as -

Distance Measuring Techniques and The Milky Way Galaxy

Lecture 12: Distances to stars. Astronomy 111

Chapter 15 Surveying the Stars Pearson Education, Inc.

Module 3: Astronomy The Universe Topic 2 Content: The Milky Way Galaxy Presentation Notes

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

Star systems like our Milky Way. Galaxies

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

9.6. Other Components of the Universe. Star Clusters. Types of Galaxies

The Cosmic Perspective. Surveying the Properties of Stars. Surveying the Stars. How do we measure stellar luminosities?

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

Phys 214. Planets and Life

The Stars. Background & History The Celestial Sphere: Fixed Stars and the Luminaries

Stars & Galaxies. Chapter 27 Modern Earth Science

It is about 100,000 ly across, 2,000 ly thick, and our solar system is located 26,000 ly away from the center of the galaxy.

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

Exam 1 Astronomy 114. Part 1

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

E1. This question is about stars. (a) Distinguish between apparent magnitude and absolute magnitude. [2]

arxiv: v3 [physics.ed-ph] 15 Jun 2016

Stars: Stars and their Properties

Writing very large numbers

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Transcription:

Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson I February 2, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 1 / 22

Table of Contents 1 Stars and Galaxies 2 Distance Measurements Stellar parallax Stellar luminosity L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 2 / 22

Stars and Galaxies Night sky provides a strong impression of a changeless universe Clouds drift across the Moon on longer times Moon itself grows and shrinks Moon and planets move against the background of stars These are merely local phenomena caused by motions within our solar system Far beyond planets stars appear motionless L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 3 / 22

Stars and Galaxies According to ancient cosmological belief stars except for a few that appeared to move (the planets) where fixed on sphere beyond last planet The universe was self contained and we (here on Earth) were at its center L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 4 / 22

Stars and Galaxies Our view of universe dramatically changed after Galileo s telescopic observations: we no longer place ourselves at the center and we view the universe as vastly larger L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 5 / 22

Stars and Galaxies Is the Earth flat? L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 6 / 22

Stars and Galaxies Distances involved are so large that we specify them in terms of the time it takes the light to travel a given distance light second + 1 ls = 1 s 3 108 m/s = 3 108 m = 300, 000 km light minute + 1 lm = 18 106 km light year + 1 ly = 2.998 108 m/s 3.156 107 s/yr = 9.46 1015 m 1013 km How long would it take the space shuttle to go 1 ly? Shuttle orbits Earth @ 18,000 mph + it would need 37, 200 yr L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 7 / 22

Stars and Galaxies For specifying distances to Sun and Moon we usually use km but we could specify them in terms of light Earth-Moon distance is 384,000 km 1.28 ls. Earth-Sun distance is 150,000,000 km 8.3 lm Far out in the solar system Pluto is about 6 10 9 km from the Sun 6 10 4 ly Nearest star to us Proxima Centauri is about 4.3 ly away Nearest star is 10,000 times farther from us than outer reach of solar system L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 8 / 22

Stars and Galaxies On clear moonless nights thousands of stars with varying degrees of brightness can be seen as well as the long cloudy strip known as Milky Way Galileo first observed with his telescope that Milky Way is comprised of countless numbers of individual stars Half century later (about 1750) Thomas Wright suggested that Milky Way was a flat disc of stars extending to great distances in a plane which we call Galaxy (Greek for milky way ) Milky Way over Quiver Tree Forest in southern Namibia L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 9 / 22

Stars and Galaxies Galaxy has diameter 100, 000 ly and thickness 2, 000 ly It has a bulging central nucleus and spiral arms Our Sun is located half way from the Galactic center to the edge some 26, 000 ly from the center L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 10 / 22

Stars and Galaxies Sun orbits Galactic center about once every 250 million years its speed is 2π 26, 000 10 v = 13 km 2.5 10 8 yr 3.156 10 7 = 200 km/s (1) s/yr Total mass of all stars can be estimated using orbital data of Sun Assume most of the mass is concentrated near center of Galaxy Sun and solar system (of total mass m) move in circular orbit around Galaxy center (of total mass M) Apply Newton s laws G = 6.674 10 11 N m 2 kg 2 GMm r 2 = m v2 r (2) M = r v2 G 2 1041 kg (3) Assuming all stars in Galaxy are similar to Sun (M 2 10 30 kg) we conclude that there are roughly 10 11 stars in the Galaxy L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 11 / 22

Stars and Galaxies In addition to stars we can see with telescope many faint cloudy patches that were once called nebulae Those in the constellations of Andromeda and Orion can actually be discerned with naked eye on clear night At first it was not universally accepted that these objects were extragalactic Very large telescopes constructed in XX century resolved individual stars within these extragalactic objects that also contain spiral arms It became logical that nebulae must be galaxies similar to ours Distance to nearest spiral galaxy Andromeda over 2 million ly a distance 20 times greater than the diameter of our Galaxy Today it is thought there are 4 10 10 galaxies that is as many galaxies as there are stars in the Galaxy L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 12 / 22

Stars and Galaxies 1.3 Black-body ra Deep field of view as seen by Hubble Space Telescope L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 13 / 22

Distance Measurements Stellar parallax Parallax apparent displacement of an object because of a change in observer s point of view To see how this effect works hold your hand out in front of you and look at it with your left eye closed, then your right eye closed Your hand will appear to move against the background L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 14 / 22

Distance Measurements Stellar parallax Stellar parallax Apparent motion of a star against background of more distant stars due to Earth s motion around Sun L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 15 / 22

Distance Measurements Stellar parallax Sighting angle of star relative to plane of Earth s orbit (usually indicated by θ) can be determined at 2 different times separated by six months Since we know distance d from Earth to Sun we can determine distance D to star L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 16 / 22

Distance Measurements Stellar parallax E.g. if parallax angle is p φ = 0.00006 From trigonometry tan φ = d/d and since distance to Sun is d = 1.5 10 8 km distance to star is D = d tan φ d φ = 1.5 108 km 1 10 6 = 1.5 10 14 km 15 ly (4) Star distances often specified in terms of parallax angles given in seconds of arc 1 = 1/3600 Star distances often specified in parsecs (meaning parallax angle in seconds of arc) 1 parsec is defined as 1/φ with φ in seconds E.g. if φ = 6 10 5 star is @ D = 4.5 pc L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 17 / 22

Distance Measurements Stellar luminosity Useful parameter for star or galaxy is its luminosity Total luminosity of a star is given by product of its surface area and radiation emitted per area L = 4πR 2 σt 4 (5) Total power leaving 1 m 2 of star surface radiant flux is surface brightness integrated over all frequencies and relevant solid angle F(T) = π B ν dν = 2π x 3 dx 0 c 2 h 3 (kt)4 0 e x 1 = σt4 (6) Validity of inverse-square law F 1/r 2 @ r > R outside star relies on the assumptions that no radiation is absorbed and that relativistic effects can be neglected 2nd condition is satisfied if relative velocity of observer and source are small compared to speed of light L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 18 / 22

Distance Measurements Stellar luminosity If D is distance from star to Earth 1 Continuous radiation from stars D = L 4πb (7) b radiant flux at surface of Earth or surface brightness ϑ dω ϑ dω cos ϑda da cos ϑda Figure 1.3: Left: A detector with surface element da on Earth measuring radiation coming from a direction with zenith angle ϑ. Right: An imaginary detector on the surface of a star measuring radiation emitted in the direction ϑ. L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 19 / 22 da

Distance Measurements Stellar luminosity Another important parameter of a star is its surface temperature T T is determined from spectrum of electromagnetic frequencies Stars are fairly good approximations of blackbodies Wavelength at the peak of the spectrum is related to Kelvin temperature by Wien s law λ max T = 2.9 10 3 m K (8) L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 20 / 22

Distance Measurements Stellar luminosity Hertzsprung-Russell diagram For most stars color is related to absolute luminosity and therefore to mass HR diagram useful way to present this relationship Horizontal axis shows T and vertical axis L Most stars fall along diagonal band termed main sequence Starting at lowest right we find coolest stars redish in color they are least luminous and therefore low in mass Further up towards left we find hotter and more luminous stars that are whitish like our Sun Still farther up more massive and more luminousbluish stars There are also stars that fall outside main sequence Above and to the right we find extremely large stars with high luminosity but with low (redish) color temperature At lower left there are stars of low luminosity but with high T L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 21 / 22

Distance Measurements Stellar luminosity L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 22 / 22