BRST and Dirac Cohomology

Similar documents
The Spinor Representation

Quantum Theory and Group Representations

Highest-weight Theory: Verma Modules

Topics in Representation Theory: Cultural Background

Representations Are Everywhere

Notes on BRST. Peter Woit Department of Mathematics, Columbia University December 29, 2008.

Clifford Algebras and Spin Groups

Chapter 2 The Group U(1) and its Representations

Geometry and Physics. Amer Iqbal. March 4, 2010

Topics in Representation Theory: Roots and Weights

Induced Representations and Frobenius Reciprocity. 1 Generalities about Induced Representations

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Topics in Representation Theory: Roots and Complex Structures

Symmetries, Groups, and Conservation Laws

Part III Symmetries, Fields and Particles

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS

Group Theory - QMII 2017

QUANTUM MECHANIC S. Symmetries

Quantum Mechanics for Mathematicians: The Heisenberg group and the Schrödinger Representation

Topics in Representation Theory: Lie Groups, Lie Algebras and the Exponential Map

Branching rules of unitary representations: Examples and applications to automorphic forms.

Representation Theory

A relative version of Kostant s theorem

Dirac Cohomology, Orbit Method and Unipotent Representations

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

msqm 2011/8/14 21:35 page 189 #197

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

The Weyl Character Formula

A SHORT OVERVIEW OF SPIN REPRESENTATIONS. Contents

REPRESENTATION THEORY WEEK 7

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition)

GEOMETRIC QUANTIZATION

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori

Introduction to Modern Quantum Field Theory

An Invitation to Geometric Quantization

On the singular elements of a semisimple Lie algebra and the generalized Amitsur-Levitski Theorem

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

Some Concepts used in the Study of Harish-Chandra Algebras of Matrices

-state problems and an application to the free particle

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics

Plan for the rest of the semester. ψ a

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

Introduction to Group Theory

Quantum Physics and the Representation Theory of SU(2)

Topics in Representation Theory: Fourier Analysis and the Peter Weyl Theorem

Symmetries, Fields and Particles. Examples 1.

Representations of Lorentz Group

The quantum state as a vector

Topics in Representation Theory: SU(n), Weyl Chambers and the Diagram of a Group

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

GROUP THEORY IN PHYSICS

Quantum Field Theory and Representation Theory: A Sketch

9. The Lie group Lie algebra correspondence

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F)

Kac-Moody Algebras. Ana Ros Camacho June 28, 2010

Functional determinants

Introduction to string theory 2 - Quantization

THE EULER CHARACTERISTIC OF A LIE GROUP

1 Classifying Unitary Representations: A 1

Notation. For any Lie group G, we set G 0 to be the connected component of the identity.

Construction of spinors in various dimensions

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003

TOPICS IN HARMONIC ANALYSIS WITH APPLICATIONS TO RADAR AND SONAR. Willard Miller

C*-Algebras and Group Representations

Fermionic coherent states in infinite dimensions

CHARACTERISTIC CLASSES

k=0 /D : S + S /D = K 1 2 (3.5) consistently with the relation (1.75) and the Riemann-Roch-Hirzebruch-Atiyah-Singer index formula

Math 210C. The representation ring

G : Quantum Mechanics II

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers

The path integral for photons

Modern Geometric Structures and Fields

Weyl Group Representations and Unitarity of Spherical Representations.

Why do we do representation theory?

On the geometric Langlands duality

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Introduction to the Baum-Connes conjecture

Quantising noncompact Spin c -manifolds

Quantum Field Theory

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

ON THE CLASSIFICATION OF RANK 1 GROUPS OVER NON ARCHIMEDEAN LOCAL FIELDS

Hodge Structures. October 8, A few examples of symmetric spaces

The Spectral Geometry of the Standard Model

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2)

Physics 557 Lecture 5

Introduction to Representations Theory of Lie Groups

HIGHER SPIN PROBLEM IN FIELD THEORY

Attempts at relativistic QM

1 Revision to Section 17.5: Spin

Geometric Langlands duality and the equations of Nahm and Bogomolny

A GEOMETRIC JACQUET FUNCTOR

Maxwell s equations. electric field charge density. current density

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Tutorial 5 Clifford Algebra and so(n)

1 Mathematical preliminaries

Topics in Representation Theory: The Weyl Integral and Character Formulas

Appendix Complexifications of Real Lie Algebras and the Tensor Product Decomposition of sl(2, C) R Representations

Kazhdan s orthogonality conjecture for real reductive groups

These notes are incomplete they will be updated regularly.

Transcription:

BRST and Dirac Cohomology Peter Woit Columbia University Dartmouth Math Dept., October 23, 2008 Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 1 / 23

Outline 1 Introduction 2 Representation Theory and Quantum Mechanics 3 Gauge Symmetry and BRST 4 Highest Weight Theory and Lie Algebra Cohomology 5 Dirac Cohomology 6 Conclusions Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 2 / 23

Introduction Physics Problem Quantum field theories used to describe elementary particles have a symmetry under an infinite dimensional group, the gauge group. How does one handle this? BRST : Technology using anticommuting variables, developed early 1970s by physicists Becchi, Rouet, Stora and Tyutin. New Ideas in Representation Theory Algebraic approach to representations of semi-simple Lie algebras: use Casimir operators and their action on reps. (Harish-Chandra homomorphism) to characterize irreducible reps. Lie algebra cohomology. New approach: introduce a Clifford algebra, spinors, and take a square root of the Casimir. This is a sort of Dirac operator, use to construct a Dirac cohomology that will characterize representations. Highly recommended reference: Dirac Operators in Representation Theory, Huang and Pandzic, Birkhauser 2006. Idea on sale here: think of BRST as Dirac cohomology Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 3 / 23

Representation Theory and Quantum Mechanics Quantum Mechanics Quantum mechanics has two basic structures: I: States The state of a physical system is given by a vector ψ > in a Hilbert space H. II: Observables To each observable quantity Q of a physical system corresponds a self-adjoint operator O Q on H. If O Q ψ >= q ψ > (i.e. ψ > is an eigenvector of O Q with eigenvalue q) then the observed value of Q in the state ψ > will be q. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 4 / 23

Representation Theory and Quantum Mechanics Lie Groups and Lie Algebras Let G be a Lie group, with Lie algebra (g, [, ]). Crucial Example G = SU(2), the group of 2 by 2 unitary matrices of determinant one. su(2) is trace-less 2 x 2 skew-hermitian matrices (X = X, tr X = 0). Physicists like the basis of Pauli matrices i 2 σ with ( ) ( ) ( ) 0 1 0 i 1 0 σ 1 = σ 1 0 2 = σ i 0 3 = 0 1 Geometric point of view: G is a manifold (S 3 for SU(2)), and elements X g are left-invariant vectors fields on G, i.e. left-invariant first-order differential operators. Universal Enveloping Algebra The universal enveloping algebra U(g) is the associative algebra over C of left-invariant differential operators (of ALL orders). Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 5 / 23

Representation Theory and Quantum Mechanics Representations and Quantum Mechanics A representation of a Lie algebra g is just a module for the algebra U(g). Such a module is given by a complex vector space V, and a homomorphism π : g End(V ) satisfying [π(x 1 ), π(x 2 )] = π([x 1, X 2 ]) Explicitly, for each X g we get a linear operator π(x ) and π takes the Lie bracket to the commutator. If V is a Hilbert space, and π is a unitary representation, then the π(x ) are skew-hermitian operators (these exponentiate to give unitary operators on V ). Implications To any unitary representation (π, V ) of a Lie algebra g corresponds a quantum system with state space V and algebra of observables U(g). Any quantum system with a symmetry group G gives a unitary representation of g Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 6 / 23

Representation Theory and Quantum Mechanics Examples Translations in space: G = R 3. X g = R 3 acts as the momentum operators π( X ) = i P. Eigenvalues of P are p, components of the momentum vector. Translation in time: G = R. X g = R acts as the energy (Hamiltonian) operator π(x ) = ih. Eigenvalue is the energy E. This is the Schrödinger equation i d dt ψ >= H ψ >. Rotations in space: G = Spin(3) = SU(2), X so(3) su(2) acts as the angular momentum operators π( X ) = i J. Note: the components of J are not simultaneously diagonalizable, can t characterize a state by an angular momentum vector. Phase transformations of ψ >: G = U(1) and there is an integral lattice of points in g = R that exponentiate to the identity in G. If L is a generator of this lattice, on a 1-d representation, π(l) ψ >= i2πq ψ > for some integer Q, the charge of the state. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 7 / 23

Representation Theory and Quantum Mechanics Semi-Simple Lie Algebras and Casimir Operators For G = U(1) irreducible representations are one dimensional, characterized by an integer Q ( weight to mathematicians, charge to physicists). What about larger, non-abelian Lie groups such as SU(2)? Casimir Operators For semi-simple Lie groups G, one has a bi-invariant quadratic element C in U(g) called the Casimir element. It is in the center of U(g), so it acts by a scalar on irreducible representations (Schur s lemma). Example: SU(2) For G = SU(2), the Casimir element is J1 2 + J2 2 + J2 3 and its eigenvalues are given by j(j + 1), where j is called the spin and takes values j = 0, 1/2, 1, 3/2,.... Note: as a second-order differential operator on the manifold G, the Casimir is just the Laplacian operator. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 8 / 23

Gauge Symmetry and BRST Gauge Symmetry Geometrical framework of modern quantum field theory: A principal bundle P over 3+1d spacetime M, with fiber a Lie group G (in Standard Model, G = SU(3)xSU(2)xU(1)). Connections A on P (physics interpretation: a field with photons, gluons, etc. as quanta). The space A is an inf. dim. linear space. Vector bundles on M, constructed from P and a representation of G. Sections of these vector bundles are field with quanta electrons, quarks, neutrinos, etc. The gauge group G The infinite dimensional group of automorphisms of P that preserve the fibers is called the gauge group G. Locally on M, G = Map(M, G). It acts on the above structures. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 9 / 23

Gauge Symmetry and BRST Conventional Wisdom By general philosophy of quantum systems, the state space H of a gauge theory should carry a unitary representation of G. Mathematical Problem For dim(m) > 1, little is known about the irreducible unitary reps of G. Conventional Wisdom This doesn t matter. G is just a symmetry of change of coordinates on a geometric structure, all physics should be invariant under this. The physical states should just transform as the trivial representation of G. The observable corresponding to the Lie algebra of G should be an operator G that gives Gauss s law : G ψ >= 0 for every physical state. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 10 / 23

Gauge Symmetry and BRST The BRST Formalism In quantum field theory, one would like to have a covariant formalism, with space and time treated on the same footing, the Lorentz symmetry group SO(3, 1) acting manifestly. But in such a formalism, one can show that there are no invariant states: G ψ >= 0 ψ >= 0 Gupta-Bleuler, 1950 Write G = G + + G, only enforce G + ψ >= 0. This requires that H have an indefinite inner product. A suitable decomposition exists for U(1) gauge theory, but not for the non-abelian case. BRST (Becchi-Rouet-Stora-Tyutin), 1975 Extend H to H Λ (Lie G). Construct operators Q, N on this space such that N has integer eigenvalues and gives a Z grading, and Q is a differential:q 2 = 0. Then define the physical Hilbert space as the degree-zero part of H phys = KerQ/ImQ Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 11 / 23

Gauge Symmetry and BRST A Toy Model: Gauge theory in 0+1 dimensions Simplest possible situation: 0 space and 1 time dimensions (M = S 1 ). G a connected simple compact Lie group, V an irreducible representation. Physical interpretation: quantum mechanics of the internal degrees of freedom of an infinitely massive particle, coupled to a gauge field. Connections on S 1 For G connected, all principal G-bundles P on S 1 are trivial. Choose a trivialization P G S 1. Gauge-transformations: changes of trivialization, φ Maps(S 1, G). Connections: Use trivialization to pull-back connections from P to S 1, then A(t) Map(S 1, g). Under a gauge transformation A φ 1 Aφ + φ 1 d dt φ Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 12 / 23

Gauge Symmetry and BRST Choosing a Gauge Standard tactic in quantum gauge theory: use gauge freedom to reduce to a smaller set of variables before quantizing, imposing some gauge condition. In our toy model, can always find a gauge transformation that makes A(t) = const., so impose d dt A(t) = 0. Residual Gauge Symmetry In this gauge, space of connections is just g, gauge transformations are φ G acting on connections by the adjoint action A φ 1 Aφ Want to fix gauge by demanding A t (Lie algebra of maximal torus), no component in g/t. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 13 / 23

Highest Weight Theory and Lie Algebra Cohomology Complex Semi-simple Lie algebras Under the adjoint action g = t g/t where t is the Lie algebra of a maximal torus T. T acts trivially on t, non-trivially (by roots ) on g/t C and g/t C = n + n n + is the sum of the positive root spaces, a Lie subalgebra of g C. g/t is a real even dim. vector space, which can be given various invariant complex structures, one for each choice of positive roots. The set of these choices is permuted by the Weyl group W. Example: SU(2) ( ) 1 0 t = span 0 1 W = Z 2, interchanges n + n n + = span ( ) 0 1 0 0 n = span ( ) 0 0 1 0 Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 14 / 23

Highest Weight Theory and Lie Algebra Cohomology Highest Weight Theory of g Representations Given a choice of n +, finite dimensional representations V are classified by V n+ = {v V : π(x )v = 0 X n + } For V irreducible, V n+ is 1-dimensional, carries a representation of t, the highest weight. Irreducible reps. can be characterized by Eigenvalue of the Casimir operator C. Indep. of choice of n + Highest weight. Depends on choice of n +. Example: SU(2) Irreducible spin j rep. labeled by j = 0, 1/2, 1, 3/2,..., the eigenvalue of π( i 2 σ 3) on V n+ j(j + 1), the eigenvalue of C on V. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 15 / 23

Highest Weight Theory and Lie Algebra Cohomology Lie Algebra Cohomology and BRST Motivation for homological algebra: study a module V over an algebra by replacing it by a complex of free modules using a resolution 0 ( F 2 F1 F0 ) V 0 where 2 = 0 and Im = Ker (an exact sequence ). Apply ( ) ( ) g = Hom U(g) (( ), C) to this resolution, get a new sequence, with differential d induced by. New sequence is not exact: Ker d/im d = H (g, V ). Using a standard resolution (Chevalley-Eilenberg) of V, BRST cohomology Ker Q/Im Q is just Lie algebra cohomology H (g, V ) Note: BRST wants just V g = H 0 (g, V ), but we get more. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 16 / 23

Highest Weight Theory and Lie Algebra Cohomology Examples Lie algebra g of a compact Lie group G H (g, C) = H derham (G) (for G = SU(2), H3 (g, C) = H 0 (g, C) = C). H (g, V ) = H (g, C) V g n + -cohomology (Bott-Kostant) get highest weight space H 0 (n +, V ) = V n+, but also, for each w W, 1, copies in H l(w) (n +, V ). The Euler characteristic χ(h (n +, V )) (alternating sum of H ) does not depend on the choice of n +. As a T representation χ(h (n +, V )) χ(h (n +, C)) gives the Weyl character formula for the character of V. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 17 / 23

Dirac Cohomology Index theory is based on the Dirac operator, which generates all topological classes of operators (Bott periodicity). Can find a Dirac operator on G such that D 2 = C + const.. Gives analog of H (g, V ) Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 18 / 23 Dirac Operators Discovery of Dirac: Given a Laplacian, take its square root, a Dirac operator D : D 2 = To get a square root of = ( 2 x 2 1 need to introduce γ i that satisfy γi 2 a Clifford algebra Cliff (R n ). Then the Dirac operator is D = + 2 xn 2 ) = 1, γ i γ j = γ j γ i. These generate i=1,n γ i x i

Dirac Cohomology The Dirac Operator: case of g/t More interesting case, algebraic analog of Dirac operator on G/T. Will give analog of H (n +, V ). Clifford algebra Cliff (g/t) Algebra generated by {γ i } an orthonormal basis of g/t, relations γ i γ j = γ j γ i for i j, γ 2 i = 1. Spinor space S Unique irreducible module for Cliff (g/t). Choosing a complex structure on (g/t), i.e. (g/t) C = n + + n, Cliff (g/t) C = End(Λ (n + )) S Λ (n + ) up to a projective factor ( Λ top (n ) ). (Kostant) One can construct an appropriate D U(g) Cliff (g/t), acts on V S. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 19 / 23

Dirac Cohomology Dirac Cohomology Two versions of Dirac Cohomology, on operators and on states. Operators D acts on U(g) Cliff (g/t) by Z 2 -graded commutator (da = [D, a]). D 2 = C + const. is central so d 2 = 0. Ker d/im d = U(t). States D acts on V S. One can define the Dirac cohomology H D (V ) as Ker D/(Im D Ker D), even though D 2 0. Actually, in this case, D is skew self-adjoint, so Im D Ker D = 0, and H D (V ) = Ker D. Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 20 / 23

Dirac Cohomology New Features of Dirac Cohomology On operators, get a genuine differential (d 2 = 0), on states D 2 not zero, but an element of the center of U(g). Everything is Z 2 -graded, not Z-graded Does not depend on a choice of complex structure on g/t g/t is not a subalgebra. Dirac cohomology can be defined in contexts where there is no Lie algebra cohomology. Generalization Pick ANY orthogonal decomposition g = r s, r a subalgebra, but s not. Then can define a Dirac operator D U(g) Cliff (s). Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 21 / 23

Conclusions Relation to Hecke Algebras? A general context for Dirac cohomology: In many cases of interest in representation theory, given a group G and a subgroup K, one can characterize G representations V by considering V K, the subspace of K-invariants, together with an action on V K by an algebra Hecke(G, K), a Hecke algebra. Examples Hecke(G(F q ), B(F q )), G an algebraic group, B a Borel subgroup Hecke(G(Q p ), G(Z p )) Rep C G Satake isomorphism Hecke(G(F p ((t)), G(F p [[t]])) Replacing F p by C in the last one is part of the geometric Langlands story. Representations of loop groups parametrized by connections appear, as well as a version of BRST... Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 22 / 23

Conclusions Conclusions Work in progress... Possible applications: Better non-perturbative understanding of how to handle gauge symmetry in quantum gauge theories, including in 3+1 dimensions. Insight into the correct framework for studying representations of gauge groups in d > 1. Geometric Langlands? Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 23 / 23