Calibration of Particle Instruments in Space Physics

Similar documents
Radiation Detection and Measurement

Radiation Detection and Measurement

ICPMS Doherty Lecture 1

of mass spectrometry

RADIATION DETECTION AND MEASUREMENT

In-Situ vs. Remote Sensing

Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer

RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY

Mass Spectrometry. What is Mass Spectrometry?

Calibration Techniques

Energetic Neutral Atom - ENA -Imaging Application to Planetary Research

CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS

Accelerator Mass Spectroscopy

Surface Analysis - The Principal Techniques

MEASUREMENT AND DETECTION OF RADIATION

CRaTER Science Requirements

High Energy Electron Radiation Exposure Facility at PSI

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Space plasmas measurement techniques Milan Maksimovic CNRS & LESIA, Paris Observatory, France

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second

Activities at the Laboratory of the Nuclear Engineering Department of the Polytechnic University of Valencia

Introduction to GC/MS

Contents. Preface to the First Edition Preface to the Second Edition

PERSPECTIVE STABLE ISOTOPE RATIO MS

CRaTER Pre-Environmental Review (I-PER) Science Requirements Update

Secondary Ion Mass Spectroscopy (SIMS)

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl

ICP-MS. High Resolution ICP-MS.

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

IRMS. perspective. Isotope Ratio Mass Spectrometry.

Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS.

THE SEARCH FOR NITROGEN IN SATURN S MAGNETOSPHERE. Author: H. Todd Smith, University of Virginia Advisor: Robert E. Johnson University of Virginia

Quality Assurance. Purity control. Polycrystalline Ingots

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing

EBSS: Hands-on Activity #8. Operation of an electromagnetic isotope separator (EMIS) Dan Stracener Jon Batchelder

JPL Flyby Mass Spectrometer

MS Goals and Applications. MS Goals and Applications

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

Uncertainty in Measurement of Isotope Ratios by Multi-Collector Mass Spectrometry

vacuum analysis plasma diagnostics surface science gas analysis

The accelerators at LNS - INFN and diagnostics aspects of the radioactive beams

PERSPECTIVE STABLE ISOTOPE RATIO MS

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1

Remote Imaging of Electron Acceleration at the Sun with a Lunar Radio Array

Questions not covered in this document? Contact Dr. Jerry Goldstein at

CRaTER Pre-Ship Review (PSR) Instrument Calibration Science Requirements Compliance

Defining quality standards for the analysis of solid samples

THE SOLAR WIND & SOLAR VARIABILITY

Spectroscopy for planetary upper atmospheres きょくたん

Extrel is widely respected for the quality of mass spectrometer systems that are

~1 V ~20-40 V. Electron collector PLASMA. Ion extraction optics. Ionization zone. Mass Resolving section Ion detector. e - ~20 V Filament Heater

10/8/2013. Alternatives to Mass Spectrometry and Some Real-time Monitoring Measurements. Project Driven Tasks -- Process Gas Measurements

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS)

Investigations on warm dense plasma with PHELIX facility

SMILE Solar wind Magnetosphere Ionosphere Link Explorer Novel and global X-ray imaging of the Sun Earth connection

EEE4106Z Radiation Interactions & Detection

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

METIS- ESA Solar Orbiter Mission: internal straylight analysis

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma

Quadrupole Storage Mass Spectrometry

Secondary Ion Mass Spectrometry (SIMS)

Space Instrumentation

Examples for experiments that can be done at the T9 beam line

for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York

Probing soil moisture

Proton and neutron radiation facilities in the PS East hall at CERN

X-Rays From Laser Plasmas

PHYSICS Course Structure Units Topics Marks Electrostatics Current Electricity III Magnetic Effect of Current & Magnetism

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

A RICH Photon Detector Module with G-APDs

Shielding Considerations

Neutron Metrology Activities at CIAE (2009~2010)

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics

3.5. Accelerator Mass Spectroscopy -AMS -

MPPE / ENA Energetic Neutrals Analyzer

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

MS Goals and Applications. MS Goals and Applications

An Introduction to. Ion-Optics. Series of Five Lectures JINA, University of Notre Dame Sept. 30 Dec. 9, Georg P. Berg

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics

Operational Impacts of Space Weather

1 Gamma-Ray Burst Polarimeter GAP aboard

NGRM Next Generation Radiation Monitor new standard instrument for ESA

The Principles of Astronomical Telescope Design

Joint Institute for Nuclear Research. Flerov Laboratory of Nuclear Reactions. University Center LABORATORY WORK

Monitoring solar energetic particles with ESA SREM units

Jovian Radiation Environment Models at JPL

TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS)

Autoresonant Ion Trap Mass Spectrometer The RGA Alternative

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Estec final presentation days 2018

Joseph Westlake and the PIMS Team OPAG: 24 August 2015

3. Description of Instrumentation

Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments

Introduction to the Q Trap LC/MS/MS System

Transcription:

SR-007 September 2007 Calibration of Particle Instruments in Space Physics Editors Martin Wüest INFICON Ltd, Balzers, Principality of Liechtenstein David S. Evans Space Environment Center, NOAA, Boulder CO, USA Rudolf von Steiger International Space Science Institute, Bern, Switzerland

Contents List of Figures List of Tables Preface xi xvii xix 1 Introduction 1 1.1 Particle Environments............................ 1 1.2 Measurement Requirements........................ 1 1.3 Conversion to Physical Quantities..................... 5 1.3.1 Particle Fluxes........................... 5 1.3.2 Velocity Distribution Function................... 5 1.3.3 Moments.............................. 6 1.3.4 Gas Densities............................ 7 1.4 Required Accuracy............................. 7 1.5 Error Sources................................ 8 Bibliography................................... 10 2 Review of Instruments 11 2.1 Introduction................................. 11 2.1.1 Important Characteristics of Analyzers.............. 13 2.2 Detectors.................................. 13 2.2.1 Faraday Cups............................ 13 2.2.2 Discrete Electron Multiplier.................... 14 2.2.3 Continuous Electron Multiplier.................. 15 2.2.4 Microchannel Plates........................ 18 2.2.5 Solid-State Detectors........................ 27 2.2.5.1 Energy Loss of Particles in Matter........... 27 2.2.5.2 Silicon Solid-State Detectors.............. 29 2.2.5.3 Scintillators and Cherenkov Radiators......... 32 2.2.6 Avalanche Photo Diodes...................... 34 2.3 Langmuir Probes.............................. 34 2.3.1 Overview of the Langmuir Probe Technique............ 35 2.3.2 Types of Probes Used in Ionosphere Measurements........ 36 2.3.3 Measurement Accuracy...................... 37 2.3.4 Internal Consistency Checks.................... 37 2.3.5 Implementation Issues....................... 38 2.3.5.1 Boom Mounting..................... 38 2.3.5.2 Collector Surfaces.................... 38 2.3.5.3 Probe Contamination.................. 39 2.3.5.4 Magnetically Induced Potentials............ 39 2.3.5.5 Adaptive Circuitry.................... 39 2.3.5.6 Spacecraft Design Factors................ 40 iii

iv CONTENTS 2.3.6 Summary of Langmuir Probe Operations in Dense Plasmas.... 41 2.3.7 Langmuir Probe Measurements in Low Density Plasmas..... 41 2.4 Faraday Cups................................ 43 2.4.1 Introduction............................. 43 2.4.2 Instrument Description....................... 44 2.4.2.1 System Components................... 44 2.4.2.2 Measurement Chain................... 46 2.5 Plasma Analyzers.............................. 49 2.5.1 Introduction............................. 49 2.5.2 The Retarding Potential Analyzer................. 50 2.5.3 The Cylindrical Curved Plate Electrostatic Analyzer....... 50 2.5.4 Spherical Sector Analyzers..................... 52 2.5.5 Top-Hat Analyzers......................... 54 2.5.5.1 Spherical Top-Hat Analyzers.............. 54 2.5.5.2 Toroidal Top-Hat Analyzers............... 56 2.5.5.3 Electrostatic Deflection to Increase Field of View... 59 2.5.6 Magnetic Sector Analyzers..................... 59 2.5.7 Plasma Analyzer Summary..................... 61 2.6 Mass Spectrometers............................. 62 2.6.1 Performance Specifications..................... 62 2.6.2 Introduction to Magnetic and Electric Analyzers......... 63 2.6.2.1 Magnetic Mass Spectrometers.............. 64 2.6.2.2 Double Focusing Magnetic Mass Spectrometers.... 64 2.6.2.3 E B Instruments................... 66 2.6.3 RF Mass Spectrometers...................... 66 2.6.3.1 Quadrupole Analyzers.................. 66 2.6.3.2 Omegatrons....................... 69 2.6.3.3 Bennett Ion Mass Spectrometer............. 69 2.6.4 Time-of-Flight Analyzers..................... 70 2.6.4.1 Continuous Operation TOF............... 71 2.6.5 Linear Time-of-Flight Instruments with SSD........... 74 2.6.5.1 Gated Time-of-Flight Analyzers............ 76 2.6.5.2 Foils........................... 78 2.6.5.3 TOF Electronics..................... 78 2.7 Upper Atmosphere Neutral Gas Mass Spectrometers........... 78 2.7.1 Examples of Neutral Gas Mass Spectrometers........... 79 2.7.2 Gas Inlet.............................. 80 2.7.3 Ionization Source.......................... 82 2.7.4 Cruise Conditions......................... 83 2.7.5 Spectra............................... 83 2.8 Neutral Atom Imagers........................... 83 2.8.1 Introduction............................. 83 2.8.2 Measurement Principles...................... 84 2.8.3 Rejection of Other Signal Sources................. 84 2.8.4 ENA Measurement Techniques.................. 86 2.9 Solid-State Detector Instruments...................... 90 2.9.1 Overview.............................. 90

v 2.9.2 Solid-State Detector Telescopes.................. 90 2.10 Plasma Wave Instruments.......................... 91 2.11 Electronics................................. 94 2.11.1 Amplifier and Discriminator Operation.............. 94 2.11.2 TOF Electronics.......................... 95 2.11.3 Other................................ 97 2.12 Common Instrument Problems....................... 97 2.13 Data Handling............................... 98 2.13.1 Data Compression......................... 99 2.13.2 Transmission and Ground Processing............... 100 2.14 Conclusion................................. 101 Bibliography................................... 101 3 Calibration Techniques 117 3.1 Introduction to Calibration......................... 117 3.1.1 The Geometric Factor of Particle Instruments........... 121 3.1.2 The Generic Mass Spectrometer Response............. 125 3.1.3 Dead Time Corrections in Pulse Counting Systems........ 131 3.2 Low and Medium Energy Electron Calibration............... 134 3.2.1 Electron Sources for Instrument Calibrations........... 135 3.2.1.1 Ultraviolet Photocathode Electron Sources....... 135 3.2.1.2 Hot Filament Electron Sources............. 137 3.2.1.3 Radioactive Electron Sources.............. 137 3.2.2 Test Equipment Considerations.................. 138 3.2.3 Instrument Simulations....................... 141 3.2.4 Sources of Non-Ideal Response.................. 143 3.2.5 Test and Calibration Procedures.................. 148 3.2.5.1 Component Testing................... 148 3.2.5.2 Calibration Runs..................... 150 3.2.6 How to use the Calibrations for Post-Launch Data Processing.. 154 3.3 Low Energy Ion Calibration........................ 157 3.3.1 Numerical Raytracing....................... 159 3.3.2 Laboratory Equipment....................... 160 3.3.3 Testing and Calibration....................... 165 3.3.4 Low-Energy Ion Calibration Facilities............... 165 3.3.4.1 Bennett Ion Mass Spectrometer Calibration....... 167 3.3.4.2 Calibration in a Real Plasma Environment....... 169 3.3.5 Calibration of Faraday Cup Instruments.............. 169 3.3.5.1 Bench Testing...................... 170 3.3.5.2 Beam Testing...................... 172 3.3.5.3 Absolute Calibration with an Ion Beam......... 175 3.4 Medium Energy Ion Calibration...................... 176 3.4.1 The Toroidal Imaging Mass-Angle Spectrograph......... 177 3.4.1.1 Extraction of Calibration Constants From Calibration Measurements...................... 178 3.4.1.2 From Count Rates to Physical Quantities........ 181 3.4.2 The Plasma and SupraThermal Ion Composition Instrument... 185

vi CONTENTS 3.4.2.1 Calibration of the Entrance System........... 187 3.4.2.2 Calibration of the Solid-State Detectors......... 191 3.4.2.3 Calibration of the Microchannel Plate Detectors.... 193 3.4.2.4 TOF Section Calibration................. 194 3.5 High Energy Particle Calibration...................... 196 3.5.1 Calibration of Dosimeters..................... 198 3.5.1.1 Active Volume Determination.............. 200 3.5.1.2 Energy Calibration.................... 203 3.5.2 Calibration of Telescopes...................... 207 3.5.2.1 Geometric Factor Calculation.............. 208 3.5.2.2 Geometric Factor Measurement............. 210 3.5.2.3 Electron Detection.................... 214 3.5.2.4 Conversion to Physical Units.............. 215 3.5.3 Calibration of Mass-Resolving Telescopes............. 215 3.6 Thermal Gas Calibration.......................... 224 3.6.1 The Quasi-Open Source and Thermal Gas Calibration...... 225 3.6.2 Absolute Pressure Thermal Gas Systems............. 226 3.6.3 Transfer Standard Thermal Gas Systems.............. 229 3.6.4 Gases Used for Thermal Gas Calibration............. 237 3.7 Low Energy Neutral Beam Calibration................... 237 3.7.1 Thermal Gas Beam Systems.................... 239 3.7.2 Miscellaneous Low Energy Beam Techniques........... 241 3.7.3 Molecular Beam Techniques.................... 243 3.8 ENA Calibrations.............................. 252 3.8.1 Charge Exchange Gas Cells.................... 253 3.8.2 Photo-Detachment Sources..................... 254 3.8.3 Surface Neutralization....................... 255 3.9 Cross-Calibration between the Flight Model and Laboratory Model.... 258 3.9.1 Solar Wind Instrumentation.................... 259 3.9.2 Cometary Instrumentation..................... 259 3.9.3 Pioneer Venus ONMS Backup Sensor Calibration......... 260 3.9.4 Cassini IMNS Backup Sensor Calibration............. 261 Bibliography................................... 262 4 In-Flight Instrument Calibration and Performance Verification 277 4.1 Introduction................................. 277 4.2 Sources of Instrument Degradation, Noise, and Spurious Responses... 279 4.2.1 Electrostatic Analyzers (ESAs)................... 279 4.2.2 Gain Degradation in Electron Multiplier Detectors........ 284 4.2.3 Time-of-Flight Detector Systems.................. 289 4.2.4 Energetic Particle Detectors.................... 290 4.2.5 Neutral Gas Instruments...................... 292 4.2.6 ENA instruments.......................... 294 4.2.7 Faraday Cup Instruments...................... 295 4.2.8 Langmuir Probes.......................... 296 4.2.8.1 Current-Measuring Probes................ 296 4.2.8.2 Voltage-Measuring Probes................ 298

4.2.9 Unexpected Sources of Noise................... 300 4.3 Identification of Instrument Degradation, Noise, and Spurious Responses 303 4.3.1 Identifying Gain Degradation in Electron Multiplier Detectors.. 304 4.3.2 Identifying Degradation in Time-of-Flight Detector Systems... 311 4.3.3 Identifying Noise and Radiation Damage in Solid-State Detectors 312 4.3.4 Identifying Degradation in Neutral Gas Instruments........ 317 4.3.5 Identifying Degradation and Noise in ENA Instruments...... 319 4.3.6 Identifying Degradation in Faraday Cup Instruments....... 320 4.3.7 Identifying Degradation in Langmuir Probes........... 322 4.3.7.1 Current-Measuring Probes................ 322 4.3.7.2 Voltage-Measuring Probes................ 322 4.3.8 The Use of Artificial Signal Injection for Instrument Performance Verification............................. 323 4.4 Relative and Absolute Calibration of Plasma Instruments......... 324 4.4.1 Introduction............................. 324 4.4.2 Physical Principles......................... 326 4.4.2.1 Use of Wave-Determined Plasma Densities....... 326 4.4.2.2 Calculating Particle Moments and Correcting for Spacecraft Charging...................... 327 4.4.2.3 Charge Neutrality.................... 330 4.4.2.4 Gyrotropy........................ 331 4.4.2.5 Pressure Balance..................... 332 4.4.2.6 Alfvén Waves...................... 332 4.4.2.7 Intra-Satellite versus Inter-Satellite Calibrations.... 332 4.4.3 Geotail............................... 332 4.4.4 Polar-Hydra............................. 337 4.4.5 Wind 3D Plasma.......................... 340 4.4.6 Cluster CIS............................. 347 4.4.6.1 Absolute Efficiencies.................. 347 4.4.6.2 Relative Efficiencies................... 348 4.4.6.3 Pressure Balance..................... 350 4.4.6.4 Three-Spacecraft Check of Calibrations........ 350 4.4.7 NOAA-POES............................ 350 4.4.8 FAST................................ 356 4.4.9 Wind Faraday Cups......................... 359 4.4.9.1 SWE/FC and Waves................... 360 4.4.9.2 SWE/FC and MFI.................... 361 4.4.9.3 CELIAS/MTOF Proton Monitor with SWE/FC..... 362 4.4.9.4 Moment versus Non-Linear Analysis Methods..... 364 4.4.10 In-Flight Testing in Special Circumstances............ 365 4.4.11 Langmuir Probes.......................... 366 4.5 In-Flight Relative and Absolute Calibration for Energetic Particles.... 367 4.5.1 Absolute Energy Response Calibration.............. 368 4.5.2 Relative Flux Response (Multi-Spacecraft)............ 370 4.6 In-flight Relative and Absolute Calibration for Neutral Gas Sensors... 371 4.7 In-Flight Relative and Absolute Calibration for ENA Instruments..... 376 4.8 Conclusion................................. 377 vii

viii CONTENTS Bibliography................................... 378 5 Summary and Outlook 387 5.1 Summary of Previous Chapters....................... 387 5.2 Future Calibration Needs.......................... 388 5.3 Absolute Calibration and Traceability................... 388 5.3.1 The Importance of Traceability to the Space Community..... 389 5.3.2 Lack of Adequate Standards.................... 389 5.3.3 Summary and Recommendation.................. 390 5.4 Calibration Transfer Standard........................ 390 5.4.1 Cross-Calibration Between Facilities............... 391 5.4.2 Non Beam Blocking Current Meter................ 391 5.4.3 Internal Reference Standard.................... 392 5.5 New Techniques to Improve Calibration.................. 392 5.5.1 Challenges for Small Series Production.............. 393 5.5.2 Instrument Response Modeling.................. 394 5.5.3 Statistical methods......................... 394 5.5.4 Artificial Intelligence Methods................... 394 5.6 Machine Learning Methods for Automated Calibration.......... 394 5.6.1 Current State-of-the-Art and Related Work............ 395 5.6.2 Machine Learning Methods.................... 396 5.6.2.1 Model Learning..................... 396 5.6.2.2 Transfer Learning.................... 396 5.6.2.3 Active Learning..................... 398 5.6.3 Other Methods........................... 398 5.7 Summary.................................. 399 Bibliography................................... 399 Appendix 401 A Raytracing in Instrument Design 401 A.1 Electric Field Solving Program....................... 402 A.2 Particle Ray Tracing Program........................ 407 A.3 Display Programs for Characterizing Analyzers.............. 411 A.4 Raytracing Software............................ 414 Bibliography................................... 418 B High Energy Instrument Modeling 421 B.1 Instrument Development Process...................... 421 B.2 Monte Carlo Codes............................. 425 B.3 Numerical Issues.............................. 426 B.4 Random Number Generation........................ 427 B.5 Reduction of Variance............................ 429 B.6 Problems in Using Monte Carlo Simulations................ 430 B.7 Conclusions................................. 431 B.8 Some Available Monte Carlo Codes.................... 432 Bibliography................................... 433

ix C Calibration Facilities 435 C.1 Summary of Calibration Facilities..................... 435 C.2 Description of Calibration Facilities.................... 449 Bibliography................................... 510 D Space Physics Basics 511 D.1 Distribution Functions........................... 511 D.2 Space Physics Terms............................ 512 D.3 Moments Calculation............................ 515 D.4 Typical Parameters of Space Plasma.................... 516 D.5 Comparative Characteristics of Different Mass Spectrometers....... 516 E Glossaries and Acronyms 519 E.1 Glossary of Metrology........................... 519 E.2 Acronyms.................................. 524 E.2.1 Institutions............................. 524 E.2.2 Spacecraft.............................. 525 E.2.3 Instruments............................. 527 E.2.4 Other Acronyms.......................... 531 E.2.5 Radiation Effects on Electronics.................. 533 F Units and Constants 535 F.1 SI Base Units................................ 535 F.2 SI Derived Units.............................. 535 F.3 SI Prefixes.................................. 539 F.4 Units Outside the SI............................. 539 F.5 Constants.................................. 541 F.6 Units and Unit Conversion......................... 542 G Relative Isotopic Standard 545 H Fragmentation Patterns and Total Ionization Cross Sections 555 H.1 Neutral Gas Electron Impact Mass Fragmentation Patterns........ 556 H.2 Neutral Gas Electron Impact Total Ionization Cross Sections....... 561 Bibliography................................... 569 I Authors Addresses 571 Index 575

x CONTENTS