Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems

Similar documents
Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind

Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

New Expansion and Infinite Series

On the Decomposition Method for System of Linear Fredholm Integral Equations of the Second Kind

Arithmetic Mean Derivative Based Midpoint Rule

An iterative method for solving nonlinear functional equations

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

Research Article Analytical Solution of the Fractional Fredholm Integrodifferential Equation Using the Fractional Residual Power Series Method

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

Harmonic Mean Derivative - Based Closed Newton Cotes Quadrature

Solving the (3+1)-dimensional potential YTSF equation with Exp-function method

Application Chebyshev Polynomials for Determining the Eigenvalues of Sturm-Liouville Problem

Exact solutions for nonlinear partial fractional differential equations

Green function and Eigenfunctions

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders

Solving Linear Fredholm Fuzzy Integral Equations System by Taylor Expansion Method

Math& 152 Section Integration by Parts

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

The Modified Heinz s Inequality

OPEN NEWTON - COTES QUADRATURE WITH MIDPOINT DERIVATIVE FOR INTEGRATION OF ALGEBRAIC FUNCTIONS

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient *

Section 6.1 INTRO to LAPLACE TRANSFORMS

Numerical Analysis: Trapezoidal and Simpson s Rule

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

An improvement to the homotopy perturbation method for solving integro-differential equations

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

QUADRATURE is an old-fashioned word that refers to

WENJUN LIU AND QUÔ C ANH NGÔ

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Meixner s Polynomial Method for Solving Integral Equations

Polynomials and Division Theory

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

Quadrature Rules for Evaluation of Hyper Singular Integrals

A Modified Homotopy Perturbation Method for Solving Linear and Nonlinear Integral Equations. 1 Introduction

Research Article Composite Gauss-Legendre Formulas for Solving Fuzzy Integration

The Shortest Confidence Interval for the Mean of a Normal Distribution

Math 100 Review Sheet

Calculus of variations with fractional derivatives and fractional integrals

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

A Bernstein polynomial approach for solution of nonlinear integral equations

Review of Calculus, cont d

A Brief Note on Quasi Static Thermal Stresses In A Thin Rectangular Plate With Internal Heat Generation

Undergraduate Research

arxiv: v1 [math.ca] 28 Jan 2013

Definite integral. Mathematics FRDIS MENDELU

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Application of Kudryashov method for the Ito equations

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

ON BERNOULLI BOUNDARY VALUE PROBLEM

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Lecture 19: Continuous Least Squares Approximation

Realistic Method for Solving Fully Intuitionistic Fuzzy. Transportation Problems

Calculus II: Integrations and Series

A Numerical Method for Solving Nonlinear Integral Equations

Chapter 3 Solving Nonlinear Equations

Lab 11 Approximate Integration

Orthogonal Polynomials

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

Math 1B, lecture 4: Error bounds for numerical methods

Research Article The Modified Trapezoidal Rule for Computing Hypersingular Integral on Interval

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :

Discrete Least-squares Approximations

ON THE C-INTEGRAL BENEDETTO BONGIORNO

New implementation of reproducing kernel Hilbert space method for solving a class of functional integral equations

Review of Gaussian Quadrature method

Lecture 20: Numerical Integration III

Research Article The Group Involutory Matrix of the Combinations of Two Idempotent Matrices

Jordan Journal of Mathematics and Statistics (JJMS) 11(1), 2018, pp 1-12

An approximation to the arithmetic-geometric mean. G.J.O. Jameson, Math. Gazette 98 (2014), 85 95

Results on Planar Near Rings

37 Kragujevac J. Math. 23 (2001) A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Gradimir V. Milovanović a and Miodrag M. Spalević

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

arxiv: v1 [math.na] 23 Apr 2018

Torsion in Groups of Integral Triangles

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

1.9 C 2 inner variations

Chapter 6 Techniques of Integration

c n φ n (x), 0 < x < L, (1) n=1

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Reducing Initial Value Problem and Boundary Value Problem to Volterra and Fredholm Integral Equation and Solution of Initial Value Problem

arxiv: v1 [math.gm] 30 Dec 2015

A Computational Method for Solving Linear Volterra Integral Equations

1B40 Practical Skills

Lecture 4: Piecewise Cubic Interpolation

21.6 Green Functions for First Order Equations

AMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i

Efficient Computation of a Class of Singular Oscillatory Integrals by Steepest Descent Method

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks

Ordinary Differential Equations- Boundary Value Problem

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

Transcription:

Applied Mthemticl Sciences, Vol. 9, 25, no. 8, 353-368 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/.2988/ms.25.486 Adomin Decomposition Method with Green s Function for Solving Twelfth-Order Boundry Vlue Prolems Wleed Al-Hyni Deprtment of Mthemtics College of Computer Science nd Mthemtics University of Mosul, Irq Copyright 24 Wleed Al-Hyni. This is n open ccess rticle distriuted under the Cretive Commons Attriution License, which permits unrestricted use, distriution, nd reproduction in ny medium, provided the originl work is properly cited. Astrct In this pper, the Adomin Decomposition Method with Green s function (Stndrd Adomin nd Modified Technique) is pplied to solve liner nd nonliner twelfth-order oundry vlue prolems with oundry conditions defined t even-order nd odd-order derivtives s well. The numericl results otined with smll mount of computtion re compred with the exct solutions to show the efficiency of the method. The results show tht the decomposition method is of high ccurcy, more convenient nd efficient for solving high-order oundry vlue prolems. Keywords: Adomin Decomposition Method; Adomin s polynomils; Twelfthorder oundry vlue prolems; Green s function. Introduction In the eginning of the 98 s, Adomin [-4] proposed new nd fruitful method (herefter clled the Adomin Decomposition Method or ADM) for solving liner nd nonliner (lgeric, differentil, prtil differentil, integrl, etc.) equtions. It hs een shown tht this method yields rpid convergence of the solutions series to liner nd nonliner deterministic nd stochstic equtions. A clss of chrcteristic-vlue prolems of higher order (s higher s 24) is known to rise in hydrodynmic nd hydromgnetic stility [5, 6]. Furthermore,

354 Wleed Al-Hyni it is widely well known tht when n infinite horizontl lyer of fluid is heted from elow nd is sujected to the ction of rottion, instility sets in. When this instility is s ordinry convection the ordinry differentil eqution is sixth order; when the instility sets in s overstility, it is modelled y n eighthorder ordinry differentil eqution. Suppose, now, tht uniform mgnetic field is lso pplied cross the fluid in the sme direction s grvity. When instility sets in now s ordinry convection, it is modelled y tenth-order oundry vlue prolem; when instility sets in s overstility, it is modelled y twelfth-order oundry vlue prolem (for detils, see [5]). Agrwl's ook [7] contins theorems which detil the conditions for existence nd uniqueness of solutions of the twelfth-order oundry vlue prolems. Different numericl nd semi nlyticl methods hve een proposed y vrious uthors to solve twelfth-order oundry vlue prolems. A few of them re; Twelfth-degree spline method [8], Modified Decomposition Method with the inverse opertor (MDM) [9], Thirteen-degree spline mehod [], Non-polynomil spline technique [], Vritionl Itertion Method (VIM) [2,5], Differentil Trnsform Method (DTM) [3] nd Homotopy Perturtion Method (HPM) [4]. The min ojective of this pper is to pply the Stndrd Adomin with Green's function (SAwGF) nd Modified Technique with Green's function (MTwGF) to liner nd nonliner twelfth-order oundry vlue prolems with oundry conditions defined t even-order nd odd-order derivtives s well. 2. Anlysis of the method Let us consider the generl BVP of twelfth-order y (2) (x) + g(x, y) = f(x), x () with oundry conditions y (i) () = α i, y (i) () = β i, i =,,2,3,4,5 (2) where y = y(x), g(x, y) is liner or nonliner function of y, nd f(x) re continuous functions defined in the intervl x [, ] nd α i, β i ; (i =,,2,3,4,5) re finite rel constnts. Applying the decomposition method s in [-4], Eq. () cn e written s Ly = f(x) Ny, where L = d2 is the liner opertor nd Ny = g(x, y) is the nonliner opertor. dx2 Consequently,

Adomin decomposition method with Green s function 355 y(x) = h(x) + G(x, ξ)f(ξ)dξ G(x, ξ)nydξ, (3) where h(x) is the solution of Ly = with the oundry conditions (2) nd G(x, ξ) is the Green s function [5] given y G(x, ξ) = { g 2(x, ξ) if x ξ g (x, ξ) if ξ x The Adomin s technique consists of pproximting the solution of () s n infinite series y = y n, (4) n= nd decomposing the nonliner opertor N s Ny = A n, (5) n= where A n re polynomils (clled Adomin polynomils) of y, y,, y n [-4] given y d n A n = n! dλ n [N ( λi y i )] i= λ=, n =,,2,. The proofs of the convergence of the series n= y n nd n= A n re given in [3, 7-2]. Sustituting (4) nd (5) into (3) yields y n n= = h(x) + G(x, ξ)f(ξ)dξ G(x, ξ) A n dξ. (6) n= From (6), the itertes defined using the Stndrd Adomin Method re determined in the following recursive wy:

356 Wleed Al-Hyni y = h(x) + G(x, ξ)f(ξ)dξ y n+ = G(x, ξ)a n dξ, n =,,2,, nd the itertes defined using the Modified Technique [22] re determined in the following recursive wy: y = h(x), y = G(x, ξ)f(ξ)dξ G(x, ξ)a dξ, y n+2 = G(x, ξ)a n+ dξ, n =,,2,. Thus ll components of y cn e clculted once the A n re given. We then define n the n-term pproximnt to the solution y y φ n [y] = i= y i with lim φ n [y] = n y. 3. Applictions nd numericl results In this section, the ADM with the Green s function (Stndrd Adomin nd Modified Technique) for solving liner nd nonliner twelfth-order oundry vlue prolems is illustrted in the following exmples. The computtions ssocited with the exmples were performed using Mple 3 pckge with precision of 4 dígits. Exmple Consider the following liner BVP of twelfth-order [,, 3, 5]: y (2) (x) + xy(x) = (2 + 23x + x 3 )e x, x (7) with oundry conditions y (i) () = i(2 i), y (i) () = i 2 e, i =,,2,3,4,5. (8) The exct solution of (7), (8) is y Exct (x) = x( x)e x. Applying the decomposition method, Eq. (7) cn e written s Ly = (2 + 23x + x 3 )e x xy(x), where L = d2 is the liner opertor. Consequently, dx2

Adomin decomposition method with Green s function 357 y = h(x) G(x, ξ)(2 + 23ξ + ξ 3 )e ξ dξ G(x, ξ)ξy(ξ)dξ, (9) where h(x) is the solution of Ly = with the oundry conditions (8) given y h(x) = ( 97 8 24 e) x ( 753 2 847 8 e) x + ( 24 623 e) x9 8 2 ( 389 2 739 2 e) x8 + ( 2275 24 277 8 e) x7 ( 865 4 99 e) x6 24 8 x5 3 x4 2 x3 + x nd G(x, ξ) is the Green s function given y G(x, ξ) = { g 2(x, ξ) if x ξ g (x, ξ) if ξ x where g (x, ξ) = ( x 584 + x 288 x9 296 + x8 52 x7 26 + x6 864! ) ξ + ( x 288 x 584 + x9 234 x8 26 + x7 3456 x6 44 + x! ) ξ + ( x 296 + x 234 x9 8 + x8 864 x7 44 + x6 576 x2 72576 ) ξ9 + ( x 52 x 26 + x9 864 x8 72 + x7 52 x6 432 + x3 2492 ) ξ8 + ( x 26 + x 3456 x9 44 + x8 52 x7 728 + x6 576 x4 296 ) ξ7 + ( x 864 x 44 + x9 576 x8 432 + x7 576 x6 44 + x5 864 ) ξ6 g 2 (x, ξ) = ( ξ 584 + ξ 288 ξ9 296 + ξ8 52 ξ7 26 + ξ6 864! ) x + ( ξ 288 ξ 584 + ξ9 234 ξ8 26 + ξ7 3456 ξ6 44 + ξ! ) x

358 Wleed Al-Hyni + ( ξ 296 + ξ 234 ξ9 8 + ξ8 864 ξ7 44 + ξ6 576 ξ2 72576 ) x9 + ( ξ 52 ξ 26 + ξ9 864 ξ8 72 + ξ7 52 ξ6 432 + ξ3 2492 ) x8 + ( ξ 26 + ξ 3456 ξ9 44 + ξ8 52 ξ7 728 + ξ6 576 ξ4 296 ) x7 + ( ξ 864 ξ 44 + ξ9 576 ξ8 432 + ξ7 576 ξ6 44 + ξ5 864 ) x6. Sustituting (4) in (9), the itertes defined using the Stndrd Adomin Method re determined in the following recursive wy: y = h(x) G(x, ξ)(2 + 23ξ + ξ 3 )e ξ dξ, y n+ = G(x, ξ)ξy n (ξ)dξ, n =,,2, nd the itertes defined using the Modified Technique [22] re determined in the following recursive wy: y = h(x), y = G(x, ξ)(2 + 23ξ + ξ 3 )e ξ dξ y n+2 = G(x, ξ)ξy n+ (ξ)dξ, n =,,2,. G(x, ξ)ξy (ξ)dξ, In Tle, we list the solute errors otined y SAwGF nd MTwGF. Compring them with the Thirteen-degree spline method [], Non-polynomil spline technique [], DTM [3] nd VIM [5] results. In [] the mximum solute error is 7.38E-9 with μ =, k = 22. In [] the mximum solute error is 4.72E-6. It cn e noticed tht the result otined y the present method (SAwGF) is very superior (lower error comined with less numer of itertions) to tht otined y the other mentioned methods. From Tle, it cn e deduced tht, the error decresed monotoniclly with the increment of the integer n.

Adomin decomposition method with Green s function 359 Tle : Comprison of solute errors for exmple SAwGF MTwGF DTM [3] VIM [5] x n = n = 2 n = n = 2 n = 2........ 2.3E-6 3.88E-29 2.35E-3 4.27E-26 7.5E-4 9.52E-3.2 6.56E-5.25E-27 7.49E-2.37E-24 2.77E-2.25E-3.3 3.43E-4 6.49E-27 3.86E- 7.5E-24.73E- 3.35E-3.4 7.79E-4.47E-26 8.69E-.62E-23 5.2E- 5.38E-3.5.2E-3.89E-26.2E- 2.9E-23 9.34E- 8.4E-3.6 8.2E-4.49E-26 8.85E-.65E-23.28E-.4E-2.7 3.7E-4 6.75E-27 4.E- 7.4E-24.39E- 3.93E-3.8 7.39E-5.32E-27 7.9E-2.45E-24.23E-.23E-3.9 2.38E-6 4.8E-29 2.53E-3 4.57E-26 7.49E- 8.25E-3......95E- 3.27E-3 Exmple 2 Consider the following liner BVP of twelfth-order [,, 3, 5]: y (2) (x) y(x) = 2(2x cos x + sin x), x () with oundry conditions y( ) = y() =, y () ( ) = y () () = 2 sin(), y (2) ( ) = y (2) () = 4 cos() 2 sin(), y (3) ( ) = y (3) () = 6 cos() 6 sin(), y (4) ( ) = y (4) () = 8 cos() + 2 sin(), y (5) ( ) = y (5) () = 2 cos() + sin(). } () The exct solution of (), () is y Exct (x) = (x 2 ) sin x. Applying the decomposition method, Eq. () cn e written s Ly = 2(2x cos x + sin x) + y(x), where L = d2 dx2 is the liner opertor. Consequently, y = h(x) 2 G(x, ξ)(2ξ cos ξ + sin ξ)dξ + G(x, ξ)y(ξ)dξ, (2) where h(x) is the solution of Ly = with the oundry conditions () given y

36 Wleed Al-Hyni h(x) = ( 6 95 sin 384 + ( 497 257 sin 92 + ( 649 739 sin 384 384 cos ) x ( 377 384 64 cos ) x7 ( 76 92 384 cos ) x3 ( 85 384 nd G(x, ξ) is the Green s function given y G(x, ξ) = { g 2(x, ξ) if x ξ g (x, ξ) if ξ x where g (x, ξ) = ( 2 x 2 798336 ) ξ 587 sin cos ) x9 384 23 sin cos ) x5 92 8 sin cos ) x 28 324432 + x 9 53846 x 7 264384 + 2 x 5 47456 x 3 769472 + 2 x 29492 + ( 2 x 265428 + x 8 428768 2 x 6 47456 + x 4 884736 x 2 589824 + 2 x 72576 2 29492 ) ξ + ( x 53846 x9 8257536 + x 7 29492 x5 769472 + x3 79648 x 2 4552 + x 589824 ) ξ9 + ( x 428768 x 8 589824 + x6 769472 x4 589824 + x 3 48384 x2 79648 + 769472 ) ξ8 + ( x 264384 + x 9 29492 x7 884736 + x5 29492 x 4 2492 + x3 589824 x 884736 ) ξ7 + ( 2 x 47456 + x8 769472 x6 29492 + 2 x 5 728 x4 29492 + x2 769472 2 47456 ) ξ6 + ( 2 x 47456 x9 769472 + x7 29492 2 x 6 728 + x5 29492 x3 769472 + 2 x 47456 ) ξ5 + ( x 884736 x8 589824 + x 7 2492 x6 29492 + x4 884736 x 2 29492 + 264384 ) ξ4 + ( x 769472 + x9 79648 x 8 48384 + x7 589824 x5 769472 + x 3 589824 x 428768 ) ξ3 + ( x 589824 + x 9 4552 x8 79648 + x6 769472 x 4 29492 + x2 8257536 53846 ) ξ2 + ( 2 x 29492 2 x 72576 + x 9 589824 x 7 884736 + 2 x 5 47456 x 3 428768 + 2 x 265428 ) ξ + 2 x 2 x + x 8 2 x 6 + x 4 x 2 + 2 798336 29492 769472 47456 264384 53846 324432 g 2 (x, ξ) = ( 2 ξ 2 798336 ) x 324432 + ξ 9 53846 ξ 7 264384 + 2 ξ 5 47456 ξ 3 769472 + 2 ξ 29492 + ( 2 ξ 265428 + ξ 8 428768 2 ξ 6 47456 + ξ 4 884736 ξ 2 589824 + 2 ξ 72576 2 29492 ) x + ( ξ 53846 ξ9 8257536 + ξ 7 29492 ξ5 769472 + ξ3 79648 ξ 2 4552 + ξ 589824 ) x9 + ( ξ 428768 ξ 8 589824 + ξ6 769472 ξ4 589824 + ξ 3 48384 ξ2 79648 + 769472 ) x8 + ( ξ 264384 + ξ 9 29492 ξ7 884736 + ξ5 29492 ξ 4 2492 + ξ3 589824 ξ 884736 ) x7 + ( 2 ξ 47456 + ξ8 769472 ξ6 29492 + 2 ξ 5 728 ξ4 29492 + ξ2 769472 2 47456 ) x6

Adomin decomposition method with Green s function 36 + ( 2 ξ 47456 ξ9 769472 + ξ7 29492 2 ξ 6 728 + ξ5 29492 ξ3 769472 + 2 ξ 47456 ) x5 + ( ξ 884736 ξ8 589824 + ξ 7 2492 ξ6 29492 + ξ4 884736 ξ 2 29492 + 264384 ) x4 + ( ξ 769472 + ξ9 79648 ξ 8 48384 + ξ7 589824 ξ5 769472 + ξ 3 589824 ξ 428768 ) x3 + ( ξ 589824 + ξ 9 4552 ξ8 79648 + ξ6 769472 ξ 4 29492 + ξ2 8257536 53846 ) x2 + ( 2 ξ 2 ξ + ξ 9 ξ 7 + 2 ξ 5 ξ 3 + 2 ξ ) x 29492 72576 589824 884736 47456 428768 265428 + 2 ξ 2 ξ + ξ 8 2 ξ 6 + ξ 4 ξ 2 + 2. 798336 29492 769472 47456 264384 53846 324432 Sustituting (4) in (2), the itertes defined using the Stndrd Adomin Method re determined in the following recursive wy: y = h(x) 2 G(x, ξ)(2ξ cos ξ + sin ξ)dξ y n+ = G(x, ξ)y n (ξ)dξ, n =,,2, nd the itertes defined using the Modified Technique [22] re determined in the following recursive wy: y = h(x), y = 2 G(x, ξ)(2ξ cos ξ + sin ξ)dξ y n+2 = G(x, ξ)y n+ (ξ)dξ, n =,,2,., + G(x, ξ)y (ξ)dξ, In Tle 2, we present the solute errors otined y SAwGF nd MTwGF. Compring them with the Thirteen-degree spline method [], Non-polynomil spline technique [], DTM [3] nd VIM [5] results. In [] the mximum solute error is 4.69E-5 with μ =, k = 22. In [] the mximum solute error is 4.67E-7. It cn e noticed tht the result otined y the present method (SAwGF) is very superior to tht otined y the four previous mentioned methods. From Tle 2, it cn e deduced tht, the error decresed monotoniclly with the increment of the integer n. Tle 2: Comprison of solute errors for exmple 2 SAwGF MTwGF DTM [3] VIM [5] x n = n = 2 n = n = 2 n = 2...... 2.78E-7..22E- 8.8E-22 2.28E-9.52E-9.64E-5.39E-5.2 2.3E-.34E-2 3.79E-9 2.5E-9 2.8E-3 8.33E-6

362 Wleed Al-Hyni.3 2.2E-.45E-2 4.3E-9 2.7E-9 3.44E-2.65E-4.4.8E-.8E-2 3.4E-9 2.22E-9 2.46E- 2.6E-5.5.4E- 7.39E-22 2.6E-9.39E-9.E-.38E-4.6 5.27E-2 3.37E-22 9.98E- 6.33E-2 3.67E- 2.22E-5.7.57E-2 9.89E-23 2.98E-.86E-2 9.89E-.6E-4.8 2.2E-3.37E-23 4.2E- 2.58E-2 2.28E-9.26E-4.9 5.32E-5 3.27E-25.2E-2 6.4E-23 4.68E-9.99E-5..... 8.72E-9 9.33E-5 In results not presented here, we hve seen tht the solute errors otined y SAwGF nd MTwGF in the intervl [,] re the sme s for the intervl [,]. Exmple 3 Finlly, we consider the following nonliner BVP of twelfth-order [9, 2-4]: y (2) (x) = 2e x y 2 (x) + y (x), < x < (3) with two sets of oundry conditions y (i) () = ( ) i, y (i) () = ( ) i e, i =,,2,3,4,5 (4) y (2i) () =, y (2i) () = e, i =,,2,3,4,5. (5) The exct solution of (3) with ((4) or (5)) is y Exct (x) = e x. Applying the decomposition method, Eq. (3) cn e written s Ly = 2e x Ny + y (x), where L = d2 dx 2 is the liner opertor nd Ny = y2 is the nonliner opertor. Consequently, y = h(x) + G(x, ξ){2e ξ Ny(ξ) + y (ξ)}dξ, (6) where h(x) is the solution of Ly = with the oundry conditions (4) given y

Adomin decomposition method with Green s function 363 889 497e h(x) = x 98989 2698e x 2 2 4372 8846e + x 9 24 48797 32644e x 8 27595 75e + x 7 3739 86276e x 6 24 24 2 5! x5 + 4! x4 3! x3 + 2! x2 x +, nd G(x, ξ) is the Green s function given previously in exmple. For the oundry conditions (5), h(x) is given y h(x) = e x +!! x + ( e 435456 2726 ) x9 + 8! x8 + ( 37e 844 59 2268 ) x7 + 6! x6 + ( 2863e 844 24 34 ) x5 + 4! x4 + ( 2723e 92 34 4725 ) x3 + 2! x2 + ( 4556793e 4556793 6426 ) x +, 467775 nd G(x, ξ) is the Green s function given y G(x, ξ) = { g 2(x, ξ) if x ξ g (x, ξ) if ξ x where g (x, ξ) = (! x! ) ξ + ( 27728 x3 72576 x2 + x) ξ9 8864 + ( 648 x5 296 x4 + 972 x3 x) ξ7 2268 + ( 648 x7 864 x6 + 432 x5 324 x3 + x) ξ5 567 + ( 27728 x9 2492 x8 + 972 x7 324 x5 + 7 x3 x) ξ3 2835

364 Wleed Al-Hyni + (! x! x + + 2 x) ξ 93555! ξ 8864 x9 2268 x7 + 567 x5 2835 x3 g 2 (x, ξ) = (! ) x + ( 27728 ξ3 72576 ξ2 + + ( 648 ξ5 296 ξ4 + 972 ξ3 ξ) x7 2268 + ( 648 ξ7 864 ξ6 + 432 ξ5 324 ξ3 + ξ) x5 567 + ( 27728 ξ9 2492 ξ8 + 972 ξ7 324 ξ5 + 7 ξ3 ξ) x3 2835 + (! ξ! ξ + + 2 ξ) x 93555 8864 ξ9 ξ) x9 8864 2268 ξ7 + 567 ξ5 2835 ξ3 Sustituting (4) nd (5) in (6), the itertes defined using the Stndrd Adomin Method re determined in the following recursive wy: y = h(x), y n+ = G(x, ξ){2e ξ A n + y (ξ)}dξ, n =,,2,. For the nonliner term Ny = y 2 = n= A n the corresponding Adomin polynomils re: A = y 2, A = 2y y, A 2 = 2y y 2 + y 2, n A n = y i y n i, n i, n =,, 2,. i= In Tles 3A nd 3B we give the solute errors for the prolem (3) with oundry conditions (4) nd (5) respectively otined y SAwGF. Compring it with the MDM [9], DTM [3] nd HPM [4] results, it cn e seen esily tht the result otined y the present method (SAwGF) is very superior to tht otined

Adomin decomposition method with Green s function 365 y the three previous mentioned methods. From Tles 3A nd 3B, it cn e deduced tht, the error decresed monotoniclly with the increment of the integer n. Tle 3A: Comprison of solute errors for exmple 3 x SAwGF, n = DTM [3].... 6.99E-6 4.E-5.2 2.9E-4.3E-3.3.E-3 6.75E-3.4 2.46E-3.53E-2.5 3.2E-3.98E-2.6 2.42E-3.57E-2.7.8E-3 7.7E-3.8 2.9E-4.42E-3.9 6.58E-6 4.6E-5...22E-5 Tle 3B: Comprison of solute errors for exmple 3 SAwGF MDM [9] VIM [2] DTM [3] HPM [4] x n = n = 2 n = 3 n = 3...... --. 2.64E-7.4E-2.6E-7.6E-7.6E-7 7.47E-7.2 5.3E-7 2.7E-2 3.7E-7 3.7E-7 3.7E-7.42E-6.3 6.92E-7 2.99E-2 4.22E-7 4.22E-7 4.22E-7.96E-6.4 8.4E-7 3.52E-2 4.97E-7 4.97E-7 4.97E-7 2.3E-6.5 8.55E-7 3.7E-2 5.22E-7 5.22E-7 5.22E-7 2.42E-6.6 8.4E-7 3.53E-2 4.97E-7 4.97E-7 4.96E-7 2.3E-6.7 6.92E-7 3.E-2 4.22E-7 4.22E-7 4.22E-7.96E-6.8 5.3E-7 2.9E-2 3.7E-7 3.7E-7 3.7E-7.42E-6.9 2.64E-7.5E-2.6E-7.6E-7.6E-7 7.5E-7... 2.E- 2.E-.E-6 --- It is cler from the Tles 3A nd 3B tht the numericl results corresponding to prolem (3) with oundry conditions (4) re superior to those with oundry conditions (5). 4. Conclusions The ADM with Green s function (Stndrd Adomin nd Modified Technique) hs een pplied for solving liner nd nonliner twelfth-order

366 Wleed Al-Hyni oundry vlue prolems with oundry conditions defined t even-order nd odd-order derivtives s well. Comprison of the results otined y the present method with those otined y the Twelfth-degree spline method, Modified decomposition method with the inverse opertor, Thirteen-degree spline method, Non-polynomil spline technique, Vritionl itertion method, Differentil trnsform method nd Homotopy perturtion method hs reveled tht the present method is superior ecuse of the lower error nd fewer required itertions. It hs een shown tht error is monotoniclly reduced with the increment of the integer n. References []. G. Adomin, Stochstic Systems. Acdemic Press, New York, 983. [2]. G. Adomin, Nonliner Stochstic Opertor Equtions. Acdemic Press, New York, 986. http://dx.doi.org/.6/978--2-44375-8.524- [3]. G. Adomin, Nonliner Stochstic Systems Theory nd Applictions to Physics. Kluwer Acdemic Pulishers, Dordrecht, 989. http://dx.doi.org/.2/zmm.99788 [4]. G. Adomin, Solving Frontier Prolems of Physics: The Decomposition Method. Kluwer Acdemic Pulishers, Dordrecht, 994. [5]. S. Chndrsekhr, Hydrodynmic Hydromgnetic Stility. Clrendon Press, Oxford, 96 (Reprinted: Dover Books, New York, 98). http://dx.doi.org/.7/s222622592 [6]. K. Djidjeli, E. H. Twizell nd A. Boutye, Numericl methods for specil nonliner oundry vlue prolems of order 2m. J. Comput. Appl. Mth. 47 () (993), 35-45. http://dx.doi.org/.6/377-427(93)988-s [7]. R. P. Agrwl, Boundry vlue prolems for higher-order differentil equtions. World Scientific, Singpore, 986. http://dx.doi.org/.42/266 [8]. S. S. Siddiqi nd E. H. Twizell, Spline solutions of liner twelfth-order oundry-vlue prolems. J. Comput. Appl. Mth. 78 (997), 37-39. http://dx.doi.org/.6/s377-427(96)64- [9]. A. M. Wzwz, Approximte solutions to oundry vlue prolems of higher order y the modified decomposition method. Comput. Mth. Appl. 4 (2), 679-69. http://dx.doi.org/.6/s898-22()87-5

Adomin decomposition method with Green s function 367 []. S. S. Siddiqi nd G. Akrm, Solutions of twelfth-order oundry vlue prolems using thirteen degree spline. Appl. Mth. Comput. 82 (26), 443-453. []. S. S. Siddiqi nd G. Akrm, Solutions of 2th-order oundry vlue prolems using non-polynomil spline technique. Appl. Mth. Comput. 99 (28), 559-57. http://dx.doi.org/.6/j.mc.27..5 [2]. M. A. Noor nd S. T. Mohyud-Din, Solution of twelfth-order oundryvlue prolems y Vritionl itertion technique. J. Appl. Mth. Comput. 28 (28), 23-3. http://dx.doi.org/.7/s29-8-8- [3]. Sirj-Ul Islm, S. Hq nd J. Ali, Numericl solution of specil 2th-order oundry vlue prolems using differentil trnsform method. Comm. Nonliner Sci. Numer. Simult. 4 (4) (29), 32-38. http://dx.doi.org/.6/j.cnsns.28.2.2 [4]. A. S. V. Rvi Knth nd K. Arun, He's homotopy-perturtion method for solving higher-order oundry vlue prolems. Chos Soliton Frct. 4 (4) (29), 95-99. http://dx.doi.org/.6/j.chos.28.7.44 [5]. A.S.V. Rvi Knth nd K. Arun, Vritionl itertion method for twelfthorder oundry-vlue prolems. Comput. Mth. Appl. 58 (29), 236-2364. http://dx.doi.org/.6/j.cmw.29.3.25 [6]. I. Stkgold, Green's Functions nd Boundry Vlue Prolems. John Wiley & Sons, Inc. 998. [7]. K. Aoui nd Y. Cherruult, Convergence of Adomin's method pplied to differentil equtions. Comput. Mth. Appl. 28 (5) (994), 3-9. http://dx.doi.org/.6/898-22(94)44-8 [8]. K. Aoui nd Y. Cherruult, New ides for proving convergence of decomposition methods. Comput. Mth. Appl. 29 (7) (995), 3-8. http://dx.doi.org/.6/898-22(95)22-q [9]. K. Aoui nd Y. Cherruult, Convergence of Adomin's method pplied to nonliner equtions. Mth. Comput. Model. 2 (9) (994), 69-73. http://dx.doi.org/.6/895-777(94)63-4 [2]. Y. Cherruult nd G. Adomin, Decomposition methods: new proof of convergence. Mth. Comput. Model. 8 (2) (993), 3-6. http://dx.doi.org/.6/895-777(93)9233-o

368 Wleed Al-Hyni [2]. S. Guelll nd Y. Cherruult, Prcticl formul for clcultion of Adomin's polynomils nd ppliction to the convergence of the decomposition method. Int. J. Biomed. Comput. 36 (3) (994), 223-228. http://dx.doi.org/.6/2-7(94)957-4 [22]. A. M. Wzwz, A relile modifiction of Adomin decomposition method. Appl. Mth. Comput. 2 () (999), 77-86. http://dx.doi.org/.6/s96-33(98)24-3 Received: Octoer 7, 24; Pulished: Jnury 5, 25