Propositional Logic Sequent Calculus

Similar documents
Propositional Logic Language

CHAPTER 10. Gentzen Style Proof Systems for Classical Logic

Fundamentals of Logic

Gentzen Sequent Calculus LK

Propositional and Predicate Logic. jean/gbooks/logic.html

Chapter 11: Automated Proof Systems

Propositional Logic: Deductive Proof & Natural Deduction Part 1

Chapter 11: Automated Proof Systems (1)

Mathematics for linguists

Lecture 11: Measuring the Complexity of Proofs

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Equational Logic: Part 2. Roland Backhouse March 6, 2001

Natural Deduction. Formal Methods in Verification of Computer Systems Jeremy Johnson

Propositional Logic: Gentzen System, G

Preuves de logique linéaire sur machine, ENS-Lyon, Dec. 18, 2018

arxiv:math/ v1 [math.lo] 27 Jan 2003

An Introduction to Proof Theory

Propositional logic (revision) & semantic entailment. p. 1/34

Natural Deduction for Propositional Logic

3 Propositional Logic

2. The Logic of Compound Statements Summary. Aaron Tan August 2017

CS206 Lecture 03. Propositional Logic Proofs. Plan for Lecture 03. Axioms. Normal Forms

Announcements. CS243: Discrete Structures. Propositional Logic II. Review. Operator Precedence. Operator Precedence, cont. Operator Precedence Example

Equivalents of Mingle and Positive Paradox

Logic: Propositional Logic (Part I)

Phil Introductory Formal Logic

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

arxiv:math.lo/ v2 28 Jun 2005

Logic for Computer Science - Week 4 Natural Deduction

First-order logic Syntax and semantics

Propositional Calculus - Soundness & Completeness of H

CSC Discrete Math I, Spring Propositional Logic

Packet #1: Logic & Proofs. Applied Discrete Mathematics

LING 501, Fall 2004: Laws of logic and the definitions of the connectives

Dual-Intuitionistic Logic and Some Other Logics

Přednáška 12. Důkazové kalkuly Kalkul Hilbertova typu. 11/29/2006 Hilbertův kalkul 1

Structuring Logic with Sequent Calculus

Chapter 3: Propositional Calculus: Deductive Systems. September 19, 2008

Announcements. CS311H: Discrete Mathematics. Propositional Logic II. Inverse of an Implication. Converse of a Implication

Lecture Notes on Sequent Calculus

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19.

Logic: First Order Logic

AN INTRODUCTION TO SEPARATION LOGIC. 2. Assertions

Introduction to Intuitionistic Logic

Propositional Reasoning

Predicate Logic - Deductive Systems

Propositional Calculus - Natural deduction Moonzoo Kim CS Dept. KAIST

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

LOGIC PROPOSITIONAL REASONING

MAI0203 Lecture 7: Inference and Predicate Calculus

Propositional Logic: Evaluating the Formulas

Nonclassical logics (Nichtklassische Logiken)

Computation and Logic Definitions

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning

Supplementary exercises in propositional logic

COM S 330 Homework 02 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

Notes on proof-nets. Daniel Murfet. 8/4/2016 therisingsea.org/post/seminar-proofnets/

A Local System for Classical Logic

Solutions to Homework I (1.1)

Propositional Logic: Part II - Syntax & Proofs 0-0

An overview of Structural Proof Theory and Computing


Warm-Up Problem. Is the following true or false? 1/35

Propositional Logic Logical Implication (4A) Young W. Lim 4/11/17

CATEGORICAL MODELS OF FIRST-ORDER CLASSICAL PROOFS

TRANSLATING A SUPPES-LEMMON STYLE NATURAL DEDUCTION INTO A SEQUENT CALCULUS

Compound Propositions

Semantics for Propositional Logic

22c:145 Artificial Intelligence

Computational Logic Chapter 2. Propositional Logic

Part 1: Propositional Logic

Program Analysis Part I : Sequential Programs

Atomic Cut Elimination for Classical Logic

Today. Proof using contrapositive. Compound Propositions. Manipulating Propositions. Tautology

CHAPTER 11. Introduction to Intuitionistic Logic

Deductive Systems. Lecture - 3

Propositional Logic. Jason Filippou UMCP. ason Filippou UMCP) Propositional Logic / 38

Sequent calculus for predicate logic


Classical Propositional Logic

CSE 311: Foundations of Computing. Lecture 3: Digital Circuits & Equivalence

Propositional Resolution

A CUT-FREE SIMPLE SEQUENT CALCULUS FOR MODAL LOGIC S5

Propositional Logic Logical Implication (4A) Young W. Lim 4/21/17

CHAPTER 7. Introduction to Intuitionistic and Modal Logics. 1 Introduction to Intuitionictic Logic

A Tutorial on Computational Classical Logic and the Sequent Calculus

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Propositional Logic Arguments (5A) Young W. Lim 10/11/16

EECS 1028 M: Discrete Mathematics for Engineers

Notes on Inference and Deduction


AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC

Learning Goals of CS245 Logic and Computation

CISC-102 Winter 2016 Lecture 17

Teaching Natural Deduction as a Subversive Activity

Non-classical Logics: Theory, Applications and Tools

1. Tarski consequence and its modelling

A Deep Inference System for the Modal Logic S5

10/5/2012. Logic? What is logic? Propositional Logic. Propositional Logic (Rosen, Chapter ) Logic is a truth-preserving system of inference

Lecture Notes on Cut Elimination

Transcription:

1 / 16 Propositional Logic Sequent Calculus Mario Alviano University of Calabria, Italy A.Y. 2017/2018

Outline 2 / 16 1 Intuition 2 The LK system 3 Derivation 4 Summary 5 Exercises

Outline 3 / 16 1 Intuition 2 The LK system 3 Derivation 4 Summary 5 Exercises

Intuition 4 / 16 Idea Define inference rules for sequents Γ where Γ and are sequences of formulas

Intuition 4 / 16 Idea Define inference rules for sequents Γ where Γ and are sequences of formulas Intuition Γ is the syntactic counterpart of Γ = Goal 1 Γ holds if Γ = (completeness) Goal 2 Γ implies Γ = (soundness)

Intuition 4 / 16 Idea Define inference rules for sequents Γ where Γ and are sequences of formulas Intuition Γ is the syntactic counterpart of Γ = Goal 1 Γ holds if Γ = (completeness) Goal 2 Γ implies Γ = (soundness) Notation S 1 S or S 1 S 2 S From sequents S 1 (and S 2 ) conclude sequent S.

Intuition Idea Define inference rules for sequents Γ where Γ and are sequences of formulas Intuition Γ is the syntactic counterpart of Γ = Goal 1 Γ holds if Γ = (completeness) Goal 2 Γ implies Γ = (soundness) Notation S 1 S or S 1 S 2 S From sequents S 1 (and S 2 ) conclude sequent S. System considered here: LK, defined by Gerhard Gentzen 4 / 16

Outline 5 / 16 1 Intuition 2 The LK system 3 Derivation 4 Summary 5 Exercises

LK Logistischer Klassischer Kalkül (1) 6 / 16 Axioms Structural rules

LK Logistischer Klassischer Kalkül (1) 6 / 16 Axioms A A (ax) Structural rules

LK Logistischer Klassischer Kalkül (1) 6 / 16 Axioms A A (ax) Structural rules permutation Γ, A, B, Γ Γ, B, A, Γ (p.l) Γ, A, B, Γ, B, A, (p.r)

LK Logistischer Klassischer Kalkül (1) 6 / 16 Axioms A A (ax) Structural rules permutation contraction Γ, A, B, Γ Γ, B, A, Γ (p.l) Γ, A, B, Γ, B, A, (p.r) Γ, A, A Γ, A (c.l) Γ, A, A Γ, A (c.r)

LK Logistischer Klassischer Kalkül (1) 6 / 16 Axioms A A (ax) Structural rules permutation contraction weakening Γ, A, B, Γ Γ, B, A, Γ (p.l) Γ, A, B, Γ, B, A, (p.r) Γ, A, A Γ, A (c.l) Γ, A, A Γ, A (c.r) Γ Γ, A (w.l) Γ Γ, A (w.r)

LK Logistischer Klassischer Kalkül (1) Axioms A A (ax) Structural rules permutation contraction weakening cut Γ, A, B, Γ Γ, B, A, Γ (p.l) Γ, A, B, Γ, B, A, (p.r) Γ, A, A Γ, A (c.l) Γ, A, A Γ, A (c.r) Γ Γ, A (w.l) Γ Γ, A (w.r) Γ, A Γ, A Γ, Γ, (cut) 6 / 16

LK Logistischer Klassischer Kalkül (1) Axioms A A (ax) Structural rules What are A and B? What Γ, Γ,,? permutation contraction weakening cut Γ, A, B, Γ Γ, B, A, Γ (p.l) Γ, A, B, Γ, B, A, (p.r) Γ, A, A Γ, A (c.l) Γ, A, A Γ, A (c.r) Γ Γ, A (w.l) Γ Γ, A (w.r) Γ, A Γ, A Γ, Γ, (cut) 6 / 16

LK Logistischer Klassischer Kalkül (2) 7 / 16 Logical rules

LK Logistischer Klassischer Kalkül (2) 7 / 16 Logical rules Γ, A Γ, A B ( l.1) Γ, A Γ, B ( r) Γ, A B Γ, B Γ, A B ( l.2)

LK Logistischer Klassischer Kalkül (2) Logical rules Γ, A Γ, A B ( l.1) Γ, A Γ, B ( r) Γ, A B Γ, B Γ, A B ( l.2) Γ, A Γ, B ( l) Γ, A B Γ, A Γ, A B ( r.1) Γ, B Γ, A B ( r.2) 7 / 16

LK Logistischer Klassischer Kalkül (2) Logical rules Γ, A Γ, A B ( l.1) Γ, A Γ, B ( r) Γ, A B Γ, B Γ, A B ( l.2) Γ, A Γ, B ( l) Γ, A B Γ, A Γ, A B ( r.1) Γ, B Γ, A B ( r.2) Γ, A Γ, A ( l) Γ, A Γ, A ( r) 7 / 16

LK Logistischer Klassischer Kalkül (2) Logical rules Γ, A Γ, A B ( l.1) Γ, A Γ, B ( r) Γ, A B Γ, B Γ, A B ( l.2) Γ, A Γ, B ( l) Γ, A B Γ, A Γ, A B ( r.1) Γ, B Γ, A B ( r.2) Γ, A Γ, A ( l) Γ, A Γ, A ( r) Γ, A Γ, B ( l) Γ, A B Γ, A, B Γ, A B ( r) 7 / 16

Outline 8 / 16 1 Intuition 2 The LK system 3 Derivation 4 Summary 5 Exercises

Derivation 9 / 16 Use these inference rules consecutively

Derivation 9 / 16 Example Use these inference rules consecutively A A (ax) A, A ( r)

Derivation 9 / 16 Example Use these inference rules consecutively A A (ax) A, A ( r) If on top there are only axioms then it is a derivation of the bottom sequent

Derivation 9 / 16 Example Use these inference rules consecutively A A (ax) A, A ( r) If on top there are only axioms then it is a derivation of the bottom sequent Theorem Sequent Calculus is sound and complete, i.e., if we can derive Γ then Γ =, and if Γ = then there is a derivation for Γ.

Outline 10 / 16 1 Intuition 2 The LK system 3 Derivation 4 Summary 5 Exercises

LK Summary A A (ax) Γ, A, B, Γ Γ, B, A, Γ (p.l) Γ, A, B, Γ, B, A, (p.r) Γ Γ, A (w.l) Γ Γ, A (w.r) Γ, A, A Γ, A (c.l) Γ, A, A Γ, A (c.r) Γ, A Γ, A Γ, Γ, (cut) Γ, A Γ, A B ( l.1) Γ, A Γ, B ( r) Γ, A B Γ, B Γ, A B ( l.2) Γ, A Γ, B ( l) Γ, A B Γ, A Γ, A B ( r.1) Γ, B Γ, A B ( r.2) Γ, A Γ, A ( l) Γ, A Γ, A ( r) Γ, A Γ, B ( l) Γ, A B Γ, A, B ( r) Γ, A B 11 / 16

12 / 16 LK Example Example Do the following entailments hold? 1 (A B) B, A = 2 A C, A B = (On the blackboard.)

Outline 13 / 16 1 Intuition 2 The LK system 3 Derivation 4 Summary 5 Exercises

14 / 16 Exercises (1) (From Logic for Computer Science: Foundations of Automatic Theorem Proving) Give proof trees for the following tautologies: 1 A (B A) 2 (A B) ((A (B C)) (A C)) 3 A (B A B) 4 A A B 5 B A B 6 (A B) ((A B) A) 7 A B A 8 A B B 9 (A C) ((B C) (A B C)) 10 A A

Exercises (2) (From Logic for Computer Science: Foundations of Automatic Theorem Proving) Give proof trees for the following equivalences: 1 (A B) C A (B C) (associativity) 2 (A B) C A (B C) (associativity) 3 A B B A (commutativity) 4 A B B A (commutativity) 5 A (B C) (A B) (A C) (distributivity) 6 A (B C) (A B) (A C) (distributivity) 7 (A B) A B (De Morgan) 8 (A B) A B (De Morgan) 9 A A A (idempotency) 10 A A A (idempotency) 11 A A (double negation) 12 (A B) ( A C) (A B) ( A C) (B C) (resolution) 15 / 16

END OF THE LECTURE 16 / 16