grams grams Regolith Breccia

Similar documents
14041, and Regolith Breccia 166.3, and 65.2 grams

DRAFT Coarse-fines 569 grams

14315 Unusual Regolith Breccia 115 grams

72320 Partially Shadowed Soil (portion frozen) grams. boulder # 2 station 2 South Massif

grams g g g g Regolith Breccia

65055 Basaltic Impact Melt grams

,1,2,3,4,9, Impact Melt Breccia 65.4 grams

DRAFT Regolith Breccia 155 grams

grams grams Double Drive tube 61 cm

14049 Regolith Breccia grams

72335 Impact melt Breccia grams

74235 Vitrophric Basalt 59 grams

grams grams Poikilitic Impact Melt Breccia

DRAFT Cataclastic Dunite grams

61015 Dimict Breccia 1789 grams

10020 Ilmenite Basalt (low K) 425 grams

grams grams Crystalline matrix Breccia

12052 Pigeonite Basalt 1866 grams

15595 and Vuggy Vitrophyric Pigeonite Basalt and grams

15556 Vesicular Olivine-normative Basalt grams

12013 Breccia with granite 82.3 grams

Element Cube Project (x2)

10003 Ilmenite Basalt (low K) 213 grams

76215 Vesicular Micropoikilitic Impact Melt Breccia 644 grams

Atoms and the Periodic Table

The Periodic Table of Elements

Radiometric Dating (tap anywhere)

7) Applications of Nuclear Radiation in Science and Technique (1) Analytical applications (Radiometric titration)

Summary of test results for Daya Bay rock samples. by Patrick Dobson Celia Tiemi Onishi Seiji Nakagawa

IV. Governador Valadares clinopyroxenite, 158 grams find

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

62255 Anorthosite with melt 1239 grams

Nucleus. Electron Cloud

15009 Single Drive Tube Station 6

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

CHEM 10113, Quiz 5 October 26, 2011

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Last 4 Digits of USC ID:

Ilmenite Basalt grams

PERIODIC TABLE OF THE ELEMENTS

Essential Chemistry for Biology

Earth Materials I Crystal Structures

The Periodic Table of the Elements

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

79035 Soil breccia 2806 grams

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you.

CHM 101 PRACTICE TEST 1 Page 1 of 4

(C) Pavel Sedach and Prep101 1

Solutions and Ions. Pure Substances

Guide to the Extended Step-Pyramid Periodic Table

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

Part 2. Multiple choice (use answer card). 90 pts. total. 3 pts. each.

Chemistry 431 Practice Final Exam Fall Hours

Figure of rare earth elemental abundances removed due to copyright restrictions.

70035 Ilmenite Basalt 5765 grams

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV)

12042 Soil 255 grams

DRAFT. fillet grams grams grams (frozen) grams Vesicular Ilmenite Basalt

[ ]:543.4(075.8) 35.20: ,..,..,.., : /... ;. 2-. ISBN , - [ ]:543.4(075.8) 35.20:34.

67016 Feldspathic Fragmental Breccia 4262 grams

Using the Periodic Table

If anything confuses you or is not clear, raise your hand and ask!

Instructions. 1. Do not open the exam until you are told to start.

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00

February 20, Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Job Number: S0CHG688. Dear Joe:

CHEM 130 Exp. 8: Molecular Models

CHEM 107 (Spring-2005) Exam 3 (100 pts)

Chapter 3: Stoichiometry

INSTRUCTIONS: CHEM Exam I. September 13, 1994 Lab Section

Chapter 12 The Atom & Periodic Table- part 2

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

PROOF/ÉPREUVE ISO INTERNATIONAL STANDARD. Space environment (natural and artificial) Galactic cosmic ray model

Atomic Structure & Interatomic Bonding

60016 Ancient Regolith Breccia 4307 grams

Chemistry 1 First Lecture Exam Fall Abbasi Khajo Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman

Made the FIRST periodic table

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

HANDOUT SET GENERAL CHEMISTRY II

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

Circle the letters only. NO ANSWERS in the Columns!

8. Relax and do well.

Chemistry Standard level Paper 1

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

PHYSICAL SCIENCES GRADE : 10

PLEASE PRINT YOUR NAME IN BLOCK LETTERS. Practice Exam 3. Last 4 Digits of USC ID:

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017

Grade 11 Science Practice Test

HANDOUT SET GENERAL CHEMISTRY I

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

CHEM 167 FINAL EXAM MONDAY, MAY 2 9:45 11:45 A.M GILMAN HALL

Transcription:

10019 297 grams 10066 60 grams Regolith Breccia Figure 1: Photo of 10019,1. Cube is 1 inch and scale is in cm. NASA S76-23354. Introduction Kramer et al. (1077) reported that 10019 and 10066 appeared to be alike and their chemical compositions are found to be alike (figure 1 and 2). Fruland (1983) and Simon et al. (1984) included 10019 in the Regolith Breccia Initiative. 10019 has micrometeorite pits on the top surface (figure 1). 10066 has not been studied. Simon s Mode for 10019 S L Mare Basalt 4.4 10.8 Highland Component 0.6 Regolith breccia 5.6 3 Agglutinate 11 1.8 Pyroxene 4.6 1.4 Olivine 0.5 Plagioclase 2.2 0.2 Ilmenite 1.7 0.1 Orange glass 1.2 Other glass 3 0.9 Matrix 47 %

Figure 2: Photo of 10066,1. About 4 cm across. NASA S75-3112. Petrography 10019 and 10066 are both glass-matrix regolith breccias (figure 3 and 4). Phinney et al. (1976) reported that 10019 was coherent with 10 % porosity. Phinney et al. termed 10019 a vitric-matrix breccia with 35 % glass in matrix and SEM evidence of apparent sintering - especially near glass spheres. Simon et al. (1984) determined the mode for 10019 (see table). They calculated that it had about 25% highland component, but couldn t directly identify very many clasts of highland rock. As is the case with other Apollo 11 breccias, Keil et al. (1970), Simon et al. (1984) and others have determined the composition of a wide range of glass particles in 10019. Some have the composition of the orange glass 74220, while one particle has the composition of HASP. A subset of the glass composition is different from the glass found in soil 10084, indicating that Apollo 11 breccias are derived from a different regolith (than 10084). Significant Clasts Keil et al. (1970) described an anorthosite clast in 10019 and determined the compositions of plagioclase, olivine and Mg-spinel. Chemistry Rhodes and Blanchard (1981) found that the composition of 10019 was similar to the other regolith breccias and 10084 (figure 5). The rare earth element patterns (figures 6 and 7) are exactly the same as for the soil. Rose et al. (1970) reported 157 ppm Ni. Schonfeld and Meyer (1972) calculated that 10019 was a mix of mare basalt with ~19 % gabboic anorthosite and ~3.5 % KREEP, while Rhodes and Blanchard (1981) found it was a mix of soil and high-k basalt. However, Simon et al. (1984) could not identify such a high percentage of highland component. Cosmogenic isotopes and exposure ages The cosmic ray induced activity was reported by LSPET (1969) as 26 Al = 98 dpm/kg., 22 Na = 47 dpm/ kg., 46 Sc = 10 dpm/kg., 54 Mn = 27 dpm/kg. and 56 Co = 35 dpm/kg. Other Studies Kirsten et al. (1970) used a microprobe technique to study the location of 4 He in a thin section of 10019. Bloch et al. (1971) and Neukum et al. (1972) reported the size distribution of micrometeorite craters on 10019.

Figure 3: Transmitted light photomicrograph of thin section 10019,2 showing fine matrix with broken orange glass beads and rock clasts. Field of view is 2.5 mm. NASA# S70-19237. Figure 4: Photomicrograph of thin section 10066,20. NASA S76-26288. Processing 10019 was one of the rocks in the F-201 at the time of the glove rupture (resulting in exposure to Houston air). Apollo 11 samples were originally described and cataloged in 1969 and re-cataloged by Kramer et al. (1977). There are 8 thin sections for 10019 and only 5 for 10066. List of Photo #s for 10019 S69-46255 46333 S75-31360 31367 S76-26276 26278 CMeyer 2011,1 37 g,19 PB,20,21,23 10066 40 grams,2 0.3 g,6,7,8 C Meyer 2011 10019 297 grams,17,1,2,16 19 g,26 4g,28 0.2 g,30 33 g,31 29 g,70 PB,1 167 g,35 2.5 g,73 2g,7 1.8 g,64 1.1 g,65 1.2 g,9001 2g,77 9g,82 2.1 g,25 1g,14,15,22,23,33,34

Table 1. Chemical composition of 10019. reference Rhodes81 Rose70 Wiesmann75 Wakita70 Goles70 LSPET69 O Kelley70 Gopalan70 weight 50 mg 532 mg 497 mg Lovering71 SiO2 % 41.6 (a) 41.1 (b) 41.1 33.6 (d) 40.4 TiO2 7.6 (a) 8.25 (b) 8.8 (d) 8.2 Al2O3 12.6 (a) 13.7 (b) 12.7 13.2 (d) 13 FeO 15.78 (a) 15.7 (b) 17.1 16.6 (d) 16.3 MnO 0.21 (a) 0.22 (b) 0.22 0.25 (d) 0.19 (d) MgO 7.74 (a) 7.86 (b) 8.8 7.1 (d) 6.3 CaO 11.74 (a) 11.9 (b) 12.5 (d) 12.6 Na2O 0.47 (a) 0.93 (b) 0.47 0.46 (d) 0.47 (d) K2O 0.15 (a) 0.14 (b) 0.16 (c ) 0.11 0.13 (e) 0.145 (f) 0.145 (f) 0.17 P2O5 0.11 (a) S % sum Sc ppm 64 64 (d) 60.9 (d) V 86 98 (d) 63 (d) Cr 2050 (a) 2190 (b) 2110 1990 (d) 1870 (d) Co 36 34 (d) 34.5 (d) Ni tr. Cu Zn Ga Ge ppb As Se Rb 3.25 (c ) 3.4 (e) 3.31 Sr 167 (c ) 166.4 Y 91 (e) Zr tr. 326 (c ) 490 220 (d) 580 (d) Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb 5.2 (e) Sn ppb Sb ppb Te ppb Cs ppm 0.41 (e) Ba 174 (c ) 340 130 (d) La 16.6 (c ) 15.1 14.1 (e) 15.5 (d) Ce 47.2 (c ) 56 (e) 54 (d) Pr (e) Nd 37.7 (c ) 42 (e) Sm 13.1 (c ) 13.8 14.2 (e) 12.7 (d) Eu 1.77 (c ) 1.9 2 (e) 1.78 (d) Gd 18.6 (c ) 20.5 (e) Tb 3.8 (e) Dy 20.6 (c ) 18 (e) Ho 5.9 (e) 5 (d) Er 12.1 (c ) 14.1 (e) Tm 2 (e) Yb 11.1 (c ) 12.4 12 (e) 11.7 (d) Lu 1.6 1.6 (e) 1.84 (d) Hf 13 14 (d) 10.8 (d) Ta 1.7 (d) W ppb Re ppb 0.73 Os ppb 7.8 Ir ppb Pt ppb Au ppb Th ppm 2.16 (c ) 2.7 3.2 (d) 1.9 (f) 1.9 (f) U ppm 0.58 (c ) 0.49 (d) 0.43 (f) 0.43 (f) technique: (a) XRF, (b) semimicro XRF, (c ) IDMS, (d) INAA, (e) RNAA, (f) rad. Counting

Table 2. Chemical composition of 10066. reference Goles70 weight SiO2 % 43.2 TiO2 8.2 Al2O3 12.2 FeO 16.5 MnO 0.2 (a) MgO 7.6 CaO 12 Na2O 0.46 (a) K2O P2O5 S % sum Sc ppm 60.3 (a) V 59 (a) Cr 1910 (a) Co 33.8 (a) Ni Cu Zn Ga Ge ppb As Se Rb Sr Y Zr Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb Cs ppm Ba La 17.4 (a) Ce 62 (a) Pr Nd Sm 15.1 (a) Eu 1.7 (a) Gd Tb 2.8 (a) Dy Ho 6.5 (a) Er Tm Yb 11.8 (a) Lu 1.9 (a) Hf 10.6 (a) Ta 2.1 (a) W ppb Re ppb Os ppb Ir ppb Pt ppb Au ppb Th ppm U ppm 0.56 (a) technique: (a) INAA FeO 1000 100 10 1 0.1 25 20 15 10 5 sample/ chondrite 0 0 5 10 15 20 25 30 35 10019 10084 La Pr Sm Gd Dy Er Yb Ce Nd Eu Tb Ho Tm Lu Figure 6: Normalized rare earth element diagram for breccia 10019 compared with soil 10084 (data from Wiesmann et al. 1970). 1000 100 sample/ chondrite 10 1 0.1 10084 Al2O3 Apollo soils 10019 breccia Figure 5: Composition of 10019 compared with Apollo soil samples. 10084 10066 La Pr Sm Gd Dy Er Yb Ce Nd Eu Tb Ho Tm Lu Figure 7: Normalized rare earth element diagram for breccia 10066 compared with soil 10084 (data from Goles et al. 1970).

References for 10019 and 10066 Bloch M.R., Fechtig H., Genter W., Neukum G. and Schneider E. (1971) Meteorite impact craters, crater simulations, and the meteoroid flux in the early solar system. Proc. Second Lunar Sci. Conf. 2639-2652 Cloud P., Margolis S.V., Moorman M., Barker J.M., Licari G. Kringsley D. and Barnes V.E. (1970) Micromorphology and Surface Characteristics of Lunar Dust and Breccia. Proc. Apollo 11 Lunar Science Conf. 1793-1798. Ehmann W.D. and Morgan J.W. (1970) Oxygen, silicon and aluminium in Apollo 11 rocks and fines by 14 MeV Neutron Activation. Proc. Apollo 11 Lunar Science Conf. 1071-1079. Fruland Ruth M. (1983) Regolith Breccia Workbook. Curatorial Branch Publication # 66. JSC 19045. Ganapathy R., Keays R.R., Laul J.C. and Anders E. (1970) Trace elements in Apollo 11 lunar rocks: Implications for meteorite influx and origin of moon. Proc. Apollo 11 Lunar Sci. Conf. 1117-1142. Goles G., Randle K., Osawa M., Schmitt R.A., Wakita H., Ehmann W.D. and Morgan J.W. (1970) Elemental abundances by instrumental activation analyses in chips from 27 lunar rocks. Proc. Apollo 11 Lunar Sci. Conf. 1165-1176. Gopalan K., Kaushal S., Lee-Hu C. and Wetherill G.W. (1970) Rb-Sr and U, Th-Pb ages of lunar materials. Proc. Apollo 11 Lunar Sci. Conf. 1195-1206. Keil K., Bunch T.E. and Prinz M. (1970) Mineralogy and composition of Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. 561-598. King E.A. and a cast of thousands (1969) Lunar Sample Information Catalog, Apollo 11. Lunar Receiving Laboratory, MSC 412 pp Kirsten T., Muller O., Steinbrunn F. and Zahringer J. (1970) Study of the distribution and variations of rare gases in Lunar Material by a microprobe technique. Proc. Apollo 11 lunar science Conf. 1331-1344. Kramer F.E., Twedell D.B. and Walton W.J.A. (1977) Apollo 11 Lunar Sample Information Catalogue (revised). Curator s Office, JSC 12522 Lofgren G.E. (1971b) Devitrified glass fragments from Apollo 11 and Apollo 12 lunar samples. Proc. 2 nd Lunar Sci. Conf. 949-955 Lovering J.F. and Ware N.G. (1970a) Electron probe microanalyses of minerals and glasses in Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. 633-654. Lovering J.F. and Hughes T.C. (1971) Re and Os determinations and meteoritic contamination levels in Apollo 11 and Apollo 12 lunar samples. Proc. Second Lunar Sci. Conf. 1331-1335. LSPET (1969) Preliminary examination of lunar samples from Apollo 11. Science 165, 1211-1227. McKay D.S., Greenwood W.R. and Morrison D.A. (1970) Origin of small lunar particles and breccias from the Apollo 11 site. Proc. Apollo 11 Lunar Sci. Conf. 673-693. Neukum G., Schneider E., Mehl A., Storzer D., Wagner G.A., Fectig H. and Bloch M.R. (1972) Lunar craters and exposure ages derived from crater statistics and solar flar tracks. Proc. 3 rd Lunar Sci. Conf. 2793-2810. O Kelley G.D., Eldridge J.S., Schonfeld E. and Bell P.R (1970) Primordial radionuclide abundances, solar proton and cosmic ray effects and ages of Apollo 11 lunar samples by non-destructive gamma-ray spectrometry. Proc. Apollo 11 Lunar Sci. Conf. 1407-1424. Phinney W.C., McKay D.S., Simonds C.H. and Warner J.L. (1976a) Lithification of vitric- and clastic-matrix breccias: SEM photography. Proc. 7 th Lunar Sci. Conf. 2469-2492. Rhodes J.M. and Blanchard D.P. (1981) Apollo 11 breccias and soils: Aluminous mare basalts or multi-component mixtures? Proc. 12 th Lunar Planet. Sci. Conf. 607-620. Rose H.J., Cuttitta F., Dwornik E.J., Carron M.K., Christian R.P., Lindsay J.R., Ligon D.T. and Larson R.R. (1970a) Semimicro chemical and X-ray fluorescence analysis of lunar samples. Science 167, 520-521. Rose H.J., Cuttitta F., Dwornik E.J., Carron M.K., Christian R.P., Lindsay J.R., Ligon D.T. and Larson R.R. (1970b) Semimicro X-ray fluorescence analysis of lunar samples. Proc. Apollo 11 Luanr Sci. Conf. 1493-1497.

Schmitt H.H., Lofgren G., Swann G.A. and Simmons G. (1970) The Apollo 11 samples: Introduction. Proc. Apollo 11 Lunar Science Conf. 1-54. Simon S.B., Papike J.J., Shearer C.K. and Laul J.C. (1983) Petrology of the Apollo 11 highland component. Proc. 14 th Lunar Planet. Sci. Conf. in J. Geophys. Res. 88, B103-138. Simon S.B., Papike J.J. and Shearer C.K. (1984) Petrology of Apollo 11 regolith breccias. Proc. 15 th Lunar Planet. Sci. Conf. in J. Geophys. Res. 89, C109-132. Wakita H., Schmitt R.A. and Rey P. (1970) Elemental abundances of major, minor, and trace elements in Apollo 11 lunar rocks, soil, and core samples. Proc. Apollo 11 Lunar Sci. Conf. 1685-1717.