Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Similar documents
SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

Revisiting what you have learned in Advanced Mathematical Analysis

Discussion 06 Solutions

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

3.4 Repeated Roots; Reduction of Order

Expectation and Variance

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

Relation between Fourier Series and Transform

5.1-The Initial-Value Problems For Ordinary Differential Equations

Mathematics 805 Final Examination Answers

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

Ch 1.2: Solutions of Some Differential Equations

MGM 562 Probability Theory [Teori Kebarangkalian]

3. Renewal Limit Theorems

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

Math 112 Section 10 Lecture notes, 1/7/04

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

Math 266, Practice Midterm Exam 2

1973 AP Calculus BC: Section I

Signals & Systems - Chapter 3

SOLUTIONS TO ASSIGNMENT 2 - MATH 355. with c > 3. m(n c ) < δ. f(t) t. g(x)dx =

white strictly far ) fnf regular [ with f fcs)8( hs ) as function Preliminary question jointly speaking does not exist! Brownian : APA Lecture 1.

7 - Continuous random variables

5 Probability densities

Southern Taiwan University

A modified hyperbolic secant distribution

Examples for 2.4, 2.5

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

Transform Techniques. Moment Generating Function

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

( ) = 0.43 kj = 430 J. Solutions 9 1. Solutions to Miscellaneous Exercise 9 1. Let W = work done then 0.

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Answers to 1 Homework

Elementary Differential Equations and Boundary Value Problems

Section 2: The Z-Transform

EE 529 Remote Sensing Techniques. Review

REAL ANALYSIS I HOMEWORK 3. Chapter 1

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

The Procedure Abstraction Part II: Symbol Tables and Activation Records

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

3(8 ) (8 x x ) 3x x (8 )

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Midterm exam 2, April 7, 2009 (solutions)

Solutions to Assignment 1

Experiments, Outcomes, Events and Random Variables: A Revisit

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

( A) ( B) ( C) ( D) ( E)

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

arxiv: v1 [math.pr] 21 May 2010

EXERCISE - 01 CHECK YOUR GRASP

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

! ln 2xdx = (x ln 2x - x) 3 1 = (3 ln 6-3) - (ln 2-1)

4.8 Improper Integrals

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

Math Final Exam Solutions

Calculus II (MAC )

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

Multi-Section Coupled Line Couplers

The Laplace Transform

Stochastic Structural Dynamics. Lecture-6

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions.

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

MTH 3311 Test #1. order 3, linear. The highest order of derivative of y is 2. Furthermore, y and its derivatives are all raised to the

EXERCISE - 01 CHECK YOUR GRASP

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

Differential Equations

K x,y f x dx is called the integral transform of f(x). The function

Differentiation of Exponential Functions

MTH 146 Class 11 Notes

HW3 : Moment functions Solutions

EEE 303: Signals and Linear Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

CSE 245: Computer Aided Circuit Simulation and Verification

Control System Engineering (EE301T) Assignment: 2

Problem. Statement. variable Y. Method: Step 1: Step 2: y d dy. Find F ( Step 3: Find f = Y. Solution: Assume

TOPIC 5: INTEGRATION

Mathematics 1. (Integration)

NYU CHEM GA 2600: Statistical Mechanics Midterm

Response of LTI Systems to Complex Exponentials

Math 106: Review for Final Exam, Part II. (x x 0 ) 2 = !

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

0 for t < 0 1 for t > 0

Transcription:

STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl vlus of X r vn non-ngiv ingrs:,,, 6, 8, ). Rcll W Discussion Problm (): his is vlid probbiliy disribuion. ) Find h momn-gnring funcion of X, M X ( ). For which vlus of dos i is? b) Us M X ( ) o find E ( X ).. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) ln, f ( ) ln!,,,,. ( possibl vlus of X r posiiv ingrs:,,,, ). Rcll W Discussion Problm (b): his is vlid probbiliy disribuion. ) Find h momn-gnring funcion of X, M X ( ). For which vlus of dos i is? b) Us M X ( ) o find E ( X ).

. Suppos h momn-gnring funcion of X is M X ( ). +. +.6 7. ) Find E ( X ). b) Find SD ( X ).. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) P ( X ),,,,, 6,, zro ohrwis. ) Find h vlu of h ms his is vlid probbiliy disribuion. b) Find P ( X is vn ). c) Find h momn-gnring funcion of X, M X ( ). For which vlus of dos i is? d) Find E ( X ). 6. L X b coninuous rndom vribl wih h probbiliy dnsiy funcion f ( ) C, >, zro ohrwis. ) Find h vlu of C h would m f ( ) vlid probbiliy dnsiy funcion. b) Find h cumuliv disribuion funcion of X, F ( ) P ( X ). Hin : Should b F ( ), F ( ). c) Find h probbiliy P ( 6 < X < ). f) Find h 8h prcnil of h disribuion of X,.8. g) Find h pcd vlu of X, E ( X ). h) Find h sndrd dviion of X, SD ( X ).

7. L X b coninuous rndom vribl wih h probbiliy dnsiy funcion f ( ) C,, zro ohrwis. ) Find h vlu of C h would m f ( ) vlid probbiliy dnsiy funcion. b) Find h probbiliy P ( X < ). c) Find h probbiliy P ( X > 7 ). d) Find h mn of h probbiliy disribuion of X. ) Find h mdin of h probbiliy disribuion of X. 8. Suppos rndom vribl X hs h following probbiliy dnsiy funcion: f ( ) cos, < < π, zro ohrwis. ) Find P ( X < π ). b) Find E ( X ). c) Find h mdin of h probbiliy disribuion of X.. L X b coninuous rndom vribl wih h probbiliy dnsiy funcion f ( ) 6 ( ), < <, zro lswhr. Compu P ( < X < + ).. Suppos rndom vribl X hs h following probbiliy dnsiy funcion: f ( ), < <, zro ohrwis. ) Find P ( X < ). b) Find E ( X ). c) Find h momn-gnring funcion of X, M X ( ).

. L X b coninuous rndom vribl wih h probbiliy dnsiy funcion f c,, 8, ohrwis. ) Find h vlu of c h ms f ( ) vlid probbiliy dnsiy funcion. b) Find h probbiliy P ( X < ). c) Find h mdin of h probbiliy disribuion of X. d) Find h mn of h probbiliy disribuion of X. ) Find h vrinc of h probbiliy disribuion of X.

Answrs:..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X. f ( ), f ( ), f ( ). M X' ( ) 6. E ( X ) M X' ( ). OR E ( X ) ( ) + ( ) + ( ). M X'' ( ) 8. E ( X ) M X'' ( ) OR.8. E ( X ) ( ) + ( ) + ( ).8. Vr ( X ) E ( X ) [ E ( X ) ].8.8.

. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl vlus of X r vn non-ngiv ingrs:,,, 6, 8, ). Rcll Discussion # Problm (): his is vlid probbiliy disribuion. ) Find h momn-gnring funcion of X, M X ( ). For which vlus of dos i is? M X ( ) E ( X ) 7 8 7 8 8 7 8 7 8. Mus hv < for gomric sris o convrg. < ln. b) Us M X ( ) o find E ( X ). Rcll W Discussion Problm (): E ( X ). M ' X ( ) 8, < ln. 8 E ( X ) M ' X ( ). 6

. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) ln, f ( ) ln,,,,.! ( possibl vlus of X r posiiv ingrs:,,,, ). Rcll Discussion # Problm (b): his is vlid probbiliy disribuion. Hin : Rcll h!. ) Find h momn-gnring funcion of X, M X ( ). For which vlus of dos i is? M X ( ) p ( ) ( ln ) + ll ( ln ) + ln!, R. ln! ln + ln ln b) Us M X ( ) o find E ( X ). Rcll W Discussion Problm (b): E ( X ) ln.8. MX ' ln, E ( X ) X ln. M '

. Suppos h momn-gnring funcion of X is M X ( ). +. +.6 7. ) Find E ( X ). M ' X ( ). +. +. 7. E ( X ) M ' X ( ). +. +..6. b) Find SD ( X ). M X " ( ). +.8 +. 7. E ( X ) M X " ( ). +.8 +..6. Vr ( X ) E ( X ) [ E ( X ) ].6.6.. SD ( X )..8. OR M X ( ). +. +.6 7. f ( ) f ( ) f ( ) f ( ) ( ) f ( ) 7...6 7...6.....8..6.768.76.6.6. E ( X ) f ( ).6. Vr ( X ) ( ) f ( ).. SD ( X )..8. OR Vr ( X ) f ( ).6.6..

. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) P ( X ),,,,, 6,, zro ohrwis. ) Find h vlu of h ms his is vlid probbiliy disribuion. Mus hv ll f. firs rm bs. +.. <..68. No:, whr is h goldn rio. b) Find P ( X is vn ). P ( X is vn ) f ( ) + f ( ) + f ( 6 ) + f ( 8 ) + + + 6 + 8 + firs rm bs.68.

c) Find h momn-gnring funcion of X, M X ( ). For which vlus of dos i is? M X ( ) E ( X ) bs rm firs, < < ln ln.8. d) Find E ( X ). M ' X ( ), < ln. E ( X ) M ' X ( ) +.68. OR E ( X )... 6 6 E ( X )... 6 E ( X )... 6. Thrfor, E ( X ) +.68.

6. L X b coninuous rndom vribl wih h probbiliy dnsiy funcion f ( ) C, >, zro ohrwis. ) Find h vlu of C h would m f ( ) vlid probbiliy dnsiy funcion. Mus hv C d f d. C C. C 7. 7 b) Find h cumuliv disribuion funcion of X, F ( ) P ( X ). Hin : Should b F ( ), F ( ). F ( ) P ( X ) 7 u du 7 u,. c) Find h probbiliy P ( 6 < X < ). P ( 6 < X < ) 6 7 d 7 6 6.787..7. OR P ( 6 < X < ) F ( - ) F ( 6 ) 6.87..7.

f) Find h 8h prcnil of h disribuion of X,.8..8. P ( X.8 ) F (.8 ).8 6 8.. π.8 OR P ( X.8 ).. π.8 7 d 7 π.8 π.8...8 6 8.. For fun: Mdin 6.. g) Find h pcd vlu of X, E ( X ). E ( X ) f d 7 d 7 d 7 7.. h) Find h sndrd dviion of X, SD ( X ). E ( X ) f d 7 d 7 d 7 7. Vr ( X ) E ( X ) [ E ( X ) ] 7 7. 8.7. SD ( X ) 8. 7..

7. L X b coninuous rndom vribl wih h probbiliy dnsiy funcion f ( ) C,, zro ohrwis. ) Find h vlu of C h would m f ( ) vlid probbiliy dnsiy funcion. C 7 7 C d C C. C. b) Find h probbiliy P ( X < ). P ( X < ) 7 8 d 7 7 7.6. c) Find h probbiliy P ( X > 7 ). P ( X > 7 ) 7 86 d 7 7 7 7 7..

d) Find h mn of h probbiliy disribuion of X. E( X ) f d d 6 68 6 6.. ) Find h mdin of h probbiliy disribuion of X. F ( ) P ( X ) f ydy y dy y 7 7, 7 <. F ( ) P ( X ), <. F ( ) P ( X ),. F ( m ). 7 m 7. 7 m 7 78. m 78 7..

8. Suppos rndom vribl X hs h following probbiliy dnsiy funcion: f ( ) cos, < < π, zro ohrwis. ) Find P ( X < π ). P ( X < π ) π π cos d sin sin π.77. b) Find E ( X ). π π E ( X ) cos d π sin cos.78. c) Find h mdin of h probbiliy disribuion of X. F ( ) P ( X ) π cos y dy sin, < <. Mdin: F ( m ) P ( X m ). sin m. m π.6. 6

. L X b coninuous rndom vribl wih h probbiliy dnsiy funcion f ( ) 6 ( ), < <, zro lswhr. Compu P ( < X < + ). E ( X ) 6 d 6 d 6 d 6 6.. E ( X ) 6 d 6 d 6 d 6 6.. Vr ( X ) E ( X ) [ E ( X ) ]......6..8, +.7..7 P ( < X < + ).8 d. 8 6..8.8..7

. Suppos rndom vribl X hs h following probbiliy dnsiy funcion: ) Find P ( X < ). f ( ), < <, zro ohrwis. P ( X < ) d.76. b) Find E ( X ). E ( X ) d. c) Find h momn-gnring funcion of X, M X ( ). M X ( ) d d,. M X ( ) d.

. L X b coninuous rndom vribl wih h probbiliy dnsiy funcion f c,, 8, ohrwis. ) Find h vlu of c h ms f ( ) vlid probbiliy dnsiy funcion. Mus hv d f. 8 c d c d c d c c 7 c. c 7. 8 7 c. b) Find h probbiliy P ( X < ). P ( X < ) 7 d d d 7 7 OR. 8 7 8 7 P ( X < ) P ( X ) d d.

c) Find h mdin of h probbiliy disribuion of X. F X ( ), <, 7 F X ( ) y dy, <, 7 F X ( ) y dy y dy F X ( ), 8. 7, < 8, F X ( ). < mdin < 8.. F X ( mdin ) mdin ( mdin ) 8. mdin 8.887.

d) Find h mn of h probbiliy disribuion of X. E ( X ) 7 8 7 f d d d 7.7. ) Find h vrinc of h probbiliy disribuion of X. E ( X ) f d d d 7 8 7 7 7 68 68.. Vr ( X ) E ( X ) [ E ( X ) ] 8 6.6.