Quantum manipulation of NV centers in diamond

Similar documents
Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Towards quantum simulator based on nuclear spins at room temperature

Precision sensing using quantum defects

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

Magnetic Resonance in Quantum Information

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1

Magnetic Resonance in Quantum

arxiv: v1 [quant-ph] 12 Nov 2012

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry

Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing

Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research

Friday, April 24, Hybrid approaches to quantum information science

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

Coherent manipulation of qubits for quantum hardware : the example of spins in diamond

Electron spin qubits in P donors in Silicon

MIT Department of Nuclear Science & Engineering

Photoelectric readout of electron spin qubits in diamond at room temperature

Excited-state spectroscopy of single NV defect in diamond using optically detected magnetic resonance arxiv: v2 [quant-ph] 10 Feb 2009

arxiv: v1 [cond-mat.mes-hall] 18 May 2012

Nuclear spin control in diamond. Lily Childress Bates College

Coherent control of solid state nuclear spin nano-ensembles

From trapped ions to macroscopic quantum systems

Optically-driven nuclear-spin-selective Rabi oscillations of single electron spins in diamond. D. Andrew Golter and Hailin Wang

Magnetometry of random AC magnetic fields using a single Nitrogen- Vacancy center

Quantum control of proximal spins using nanoscale magnetic resonance imaging

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

REPORT DOCUMENTATION PAGE Form Approved OMB NO

Three Pieces on Controlled Quantum Dynamics

Optical Magnetometry Using Nitrogen-Vacancy Centers

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

A Diamond Quantum Simulator

Enhanced solid-state multi-spin metrology using dynamical decoupling

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

1 Ioffe Physical-Technical Institute, St. Petersburg, Russia

Electron spin coherence exceeding seconds in high-purity silicon

Side resonances and metastable excited state of NV - center in diamond

Lecture 18 Luminescence Centers

Supplementary Information

Optically Detected Magnetic Resonance Imaging. Technology, 32000, Haifa, Israel

Magnetic measurements (Pt. IV) advanced probes

SUPPLEMENTARY INFORMATION

Magnetic measurements (Pt. IV) advanced probes

Single Photon Generation & Application

Optically-controlled controlled quantum dot spins for quantum computers

Квантовые цепи и кубиты

Part I. Principles and techniques

Magnetic Resonance with Single Nuclear-Spin Sensitivity. Alex Sushkov

Confocal Microscope Imaging of Single-Emitter Fluorescence and Photon Antibunching

arxiv: v2 [quant-ph] 30 Nov 2017

Supplementary Information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Exploring long-range interacting quantum many-body systems with Rydberg atoms

10.5 Circuit quantum electrodynamics

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

NMR of CeCoIn5. AJ LaPanta 8/15/2016

Condensed Matter Without Matter Quantum Simulation with Photons

QUANTUM RELAXOMETRIC SPECTROSCOPY USING THE NITROGEN-VACANCY CENTRE IN DIAMOND

Cavity QED with quantum dots in microcavities

Nanoscale magnetic imaging with single spins in diamond

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Probing Surface Spin Interaction Dynamics using Nitrogen-Vacancy Center Quantum Sensors with High-Fidelity State-Selective Transition Control

Sensing remote nuclear spins

Coherence and Control of Quantum Registers Based on Electronic Spin in a Nuclear Spin Bath

Pulsed photoelectric coherent manipulation and detection of NV centre spins in diamond

Measurement Based Quantum Computing, Graph States, and Near-term Realizations

Experimental Quantum Computing: A technology overview

SUPPLEMENTARY INFORMATION

Quantum Information Processing with Semiconductor Quantum Dots

Measuring Spin-Lattice Relaxation Time

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

arxiv: v1 [quant-ph] 22 Apr 2015

Direct optical interfacing of CVD diamond for deported NV-based sensing experiments

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

NV Centers in Quantum Information Technology!

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Supported by NSF and ARL

arxiv: v1 [quant-ph] 31 Aug 2016

ORGANIC MOLECULES in photonics

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Quantum Computation with Neutral Atoms Lectures 14-15

Theory for strongly coupled quantum dot cavity quantum electrodynamics

arxiv: v1 [quant-ph] 11 Nov 2014

Study and Manipulation of Photoluminescent NV Color Center in Diamond

Lecture 8, April 12, 2017

Understanding spin-qubit decoherence: From models to reality

S.A.Moiseev 1,2 *, and V.A.Skrebnev 2 **


Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Geometric spin echo under zero field

Superconducting Qubits Lecture 4

Transcription:

Quantum manipulation of NV centers in diamond 12.09.2014 The University of Virginia Physics Colloquium Alex Retzker Jianming Cai, Andreas Albrect, M. B. Plenio,Fedor Jelezko, P. London, R. Fisher,B. Nayedonov, L. Mcguiness, Guy Koplovitz, Shira Yochelis,Danny Porath, Yuval Nevo, Oded Shoseyov, Yossi Paltiel, Paz London. Ran Fischer NJP 15 013020 (2013), Nature Physics 9, 168 (2013) PRL. 111, 067601 (2013), NJP. 16 093002 (2014) B O S C H U N D S I E M E N S H A U S G E R Ä T E G R U P P E

Scanning probe magnetometer Quantum computing/simulations P. Neumann et al., Science 329, 542 (2010) Quantum devices and photonics G. Balasubramanian, et al. Nature 455, 648 (2008) J.Maze, et al, Nature 455, 644 (2008) R. Kolesov et al. Nat. Phys. 5, 470 (2009) NV in diamond Nanodiamonds for cellular imaging Biosensor technology & Molecular Spin sensors L. C. L. Hollenberg, et al, Nature Nanotec 6, 358 (2011).

Diamond 5 m The Color is given by the color centers Isotope: 99.998% 12 C Concentration of impurities: below 10 12 cm -3 (optical resolution) CVD reactor: University Paris XIII (Villtaneuse) J. Achard D. Twitchen, Element 6 Ltd Virginia Physics Colloquium I 12.09.2014 I Folie: 3

Color Centers Nitrogen-Vacancy color center excited state 3 E 1 A ground state 3 A m S = ±1 } e-spin m S = 0 Optical excitation: read out and initialization: 96% Early work: Manson, Glasbeek, Hemmer (ensembles) Single center detection Gruber A et al., Science 276 2012 (1997) Virginia Physics Colloquium I 12.09.2014 I Folie: 4

Fluorescence, a. u. Fluorescence [a.u.] Single spin deteciton A Ambient condition = Room temperature! No vacuum! Laser 30 % ESR of single N-V defect APD Single NV-Centers 2800 3000 MW frequency [MHz] MW frequency, MHz Diamond surface Microwave and Radiofrequency A Virginia Physics Colloquium I 12.09.2014 I Folie: 5

fluorescence intensity [a.u.] Coherent control I time /2 0,00 0,05 0,10 microwave pulselength [ s] m S =+1-1 m S =0 MW Jelezko et al., PRL 2004, Epstein Nat. Phys (2005), Childress Science (2006) up to GHz control, Fuchs et al., Science 326, 1520 (2009) figure of merit: Phase memory time T 2 *=110µs, T 2 =2.6 ms (e6) ultrapure CVD diamonds (no electron spins) 10 6 Rabi oscillations within T 2 Virginia Physics Colloquium I 12.09.2014 I Folie: 6

Single shot readout single nuclear spin Repetitive QND measurements reveal quantum jumps of a single nuclear spin (in diamond at room temperature) Neumann et al., Science 2010 Virginia Physics Colloquium I 12.09.2014 I Folie: 7

Ramsey magnetometer Zeeman Shift + e iwt Measurement error Total time Coherence time Virginia Physics Colloquium I 12.09.2014 I Folie: 8

NV center in diamond as a nano-scale quantum sensor o o o o Chemical and thermal stability Optical readout of spin state Coherent control with microwave Long coherence time: spin bath o Non-toxic: biological/medical application How to detect a single nucleus? o o Long measurement time: small magnetic moment Single out the target nucleus from environment noise J. R. Maze, et al, Nature 455, 644 (2008). G. Balasubramanian, et al, Nature 455, 648 (2008). Our proposal: Continuously driven diamond spin sensor Single molecule magnetic resonance spectroscopy Virginia Physics Colloquium I 12.09.2014 I Folie: 9

Decoherence of NV centers in diamond NV Center paramagnetic spin-1/2 nitrogen donors 13 C isotopic impurity spin-1/2 nuclear spins Virginia Physics Colloquium I 12.09.2014 I Folie: 12

SIGNAL NV in diamond

Measure position of a single nucleus: Idea r ˆr A = ( g 3r 2 z +1)ĥ q 0,f 0 ( ) Prob e Direction of the field Dipole - Dipole o Flip-flop process between NV sensor and target system S(t) = 1 2 + 1 4 ( ) éë 1+ cos Jt ù û ( ) J = 1 é 4 g(r) 3rz2 +1ù 1- ĥ ˆb ë û Virginia Physics Colloquium I 12.09.2014 I Folie: 14

Experimental setup and procedure Magnetic Field of 0.54T. Nuclear 13 C energy scale (Larmor frequency) at this field is ~6MHz. We apply the spin-locking sequence. The sequence is repeated ~10 5 times to average photons statistics. light Initialize NV center s spin Let the spins interact Readout NV center s spin Microwave

Experiment Virginia Physics Colloquium I 12.09.2014 I Folie: 16

Experiment Precision of 0.5 Angstrom Virginia Physics Colloquium I 12.09.2014 I Folie: 17

I PL (Rabi-normalized) Experiment Detecting and polarizing nuclear spins Experimental results Outside the double resonance, the NV center s spin is locked and decoupled from the environment At resonance, we witness oscillations of population between the spins. 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 Locking time ( sec) 18 Virginia Physics Colloquium I 12.09.2014 I Folie: 18

Polarizing Nuclei using Hartmann-Hahn sequence Polarization Direct measurements We can actually play with polarization by controlling the rates of the two sequences Alternating Or Polarize /2 [ s] /2 Virginia Physics Colloquium I 12.09.2014 I Folie: 20

Detecting and polarizing nuclear spins

Analong Quantum simulator Proposed by Feynman in 1982 Much easier than a quantum computer since does not require the usual error correction but a simplified version of it? Virginia I 12.09.2014 I Folie: 22

Digital Quantum Simulator Seth Lloyd 1996 The idea behind this is the trotter decomposition and BCH For two noncommuting operators e ieh 1 e-ieh 2 ¹ ( eie H 1 - H 2) However in the limit: Coherent control: e eh 1 +eh 2 = e eh 1 eeh 2 e-e 2 [ ] e e 3 ()... 2 H 1,H 2 Virginia I 12.09.2014 I Folie: 23

Quantum Simulator: spin arrays Single spin readout Coherent interaction Virginia Physics Colloquium I 12.09.2014 I Folie: 24

Magnetic dipole coupled spin arrays dip B 0 3cos 1 4 r 2 3 Challenge: creation and addressing single qubits Virginia Physics Colloquium I 12.09.2014 I Folie: 25

Bulck Diamond Precision is limited by 1μm with regular implantation However, for dipole dipole interaction a distance of 10 nm is necessary Virginia Physics Colloquium I 12.09.2014 I Folie: 26

Diamond-based quantum simulator: architecture Wolfgang Pauli: God made the bulk; the surface was invented by the devil Fluorine nuclear spins (directly linked to diamond or linked to a graphene sheet) Electron and nuclear spin arrays in diamond (P donor, 13 C) J.-M. Cai, AR, Fedor Jelezko, Martin B. Plenio, Nature Physics 9, 168 (2013) NV center in nuclear spin free 12 C diamond Virginia Physics Colloquium I 12.09.2014 I Folie: 27

Diamond-based quantum simulator: architecture (a) (111) surface g a =6.8kHz (b) (100) surface J.-M. Cai,, Fedor Jelezko, Martin B. Plenio, Nature Physics 9, 168 (2013) Virginia Physics Colloquium I 12.09.2014 I Folie: 28

Nuclear spin quantum simulator on diamond surface! $ # % " % # &! ' #( ) # *! +#( ) # ±1! " # 0 Virginia Physics Colloquium I 12.09.2014 I Folie: 29

Rothemund s idea: DNA origami Nature, 440, (2006) Virginia Physics ColloquiumI 12.09.2014 I Folie: 30

DNA origami and gold Figure 1. Assembly of DNA o ed. A is represented as CD signal Virginia Physics ColloquiumI 12.09.2014 I Folie: 31

SP1 and gold Oded Shoseyov and Danny Porath Virginia Physics ColloquiumI 12.09.2014 I Folie: 32

SP1 and NV Andreas Albrecht, AR, Guy Koplovitz, Fedor Jelezko, Shira Yochelis, Danny Porath, Yuval Nevo, Oded Shoseyov, Yossi Paltiel, and Martin B Plenio arxiv:1301.1871 Virginia Physics ColloquiumI 12.09.2014 I Folie: 33

The Spin lattice noise decoupling Dipolar coupling Coherence time Rabi frequency of driving/ decoupling In principle very versatile as a large set of Hamiltonians could be created digitally Virginia Physics Colloquium I 12.09.2014 I Folie: 34

Summary NV probe for measuring nuclear spin states Quantum microscope Readout a single nuclear (electron) spin state: quantum information processing Selective coupling Sensitivity limit : approaching to T 1 Probe many-body physics: towards a large-scale quantum simulator A new platform based on NVs for quantum simulations Complementary advantages to the other physical systems Virginia Physics Colloquium I 12.09.2014 I Folie: 35

Thank you! B O S C H U N D S I E M E N S H A U S G E R Ä T E G R U P P E