Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Similar documents
Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

Citation Abstract and Applied Analysis, 2013, v. 2013, article no

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Contraction Mapping Principle Approach to Differential Equations

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl:

1. Introduction. 1 b b

New Inequalities in Fractional Integrals

Refinements to Hadamard s Inequality for Log-Convex Functions

Research Article An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order

2k 1. . And when n is odd number, ) The conclusion is when n is even number, an. ( 1) ( 2 1) ( k 0,1,2 L )

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

Fractional operators with exponential kernels and a Lyapunov type inequality

On New Inequalities of Hermite-Hadamard-Fejér Type for Harmonically s-convex Functions via Fractional Integrals

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

A new model for solving fuzzy linear fractional programming problem with ranking function

NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model

Bulletin of the. Iranian Mathematical Society

Characteristic Function for the Truncated Triangular Distribution., Myron Katzoff and Rahul A. Parsa

Positive and negative solutions of a boundary value problem for a

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

Hermite-Hadamard type inequalities for harmonically convex functions

5.1-The Initial-Value Problems For Ordinary Differential Equations

MTH 146 Class 11 Notes

New general integral inequalities for quasiconvex functions

AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients

Some new integral inequalities for n-times differentiable convex and concave functions

Some Inequalities variations on a common theme Lecture I, UL 2007

REAL ANALYSIS I HOMEWORK 3. Chapter 1

Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable p-quasi-convex Functions

FM Applications of Integration 1.Centroid of Area

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

Yan Sun * 1 Introduction

Weighted Inequalities for Riemann-Stieltjes Integrals

arxiv: v1 [math.ca] 28 Jan 2013

The Hadamard s Inequality for s-convex Function

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

Fractional Calculus. Connor Wiegand. 6 th June 2017

Research Article Wirtinger-Type Inequality and the Stability Analysis of Delayed Lur e System

Integral inequalities for n times differentiable mappings

The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA

Abstract. W.W. Memudu 1 and O.A. Taiwo, 2

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

e t dt e t dt = lim e t dt T (1 e T ) = 1

Inventory Management Models with Variable Holding Cost and Salvage value

The Hadamard s inequality for quasi-convex functions via fractional integrals

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

Think of the Relationship Between Time and Space Again

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN

Research Article The Group Involutory Matrix of the Combinations of Two Idempotent Matrices

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS

Temperature Rise of the Earth

Hardy s inequality in L 2 ([0, 1]) and principal values of Brownian local times

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

The Modified Heinz s Inequality

SOLUTION FOR A SYSTEM OF FRACTIONAL HEAT EQUATIONS OF NANOFLUID ALONG A WEDGE

How to prove the Riemann Hypothesis

A Time Truncated Improved Group Sampling Plans for Rayleigh and Log - Logistic Distributions

Procedia Computer Science

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces

TEACHING STUDENTS TO PROVE BY USING ONLINE HOMEWORK Buma Abramovitz 1, Miryam Berezina 1, Abraham Berman 2

Generalization of Some Inequalities for the Ratio of Gamma Functions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Research Article New Inequalities for Gamma and Digamma Functions

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

Research Article Moment Inequalities and Complete Moment Convergence

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

Transcription:

Hindwi Pulishing orporion Inernionl Journl of Anlysis, Aricle ID 35394, 8 pges hp://d.doi.org/0.55/04/35394 Reserch Aricle New Generl Inegrl Inequliies for Lipschizin Funcions vi Hdmrd Frcionl Inegrls Em EGcn Deprmen of hemics, Fculy of Ars nd Sciences, Giresun Universiy, 800 Giresun, Turkey orrespondence should e ddressed o İm İşcn; im.iscn@giresun.edu.r Received 3 Jnury 04; Revised 8 rch 04; Acceped April 04; Pulished April 04 Acdemic Edior: Julien Slomon opyrigh 04 İmİşcn. This is n open ccess ricle disriued under he reive ommons Ariuion License, which permis unresriced use, disriuion, nd reproducion in ny medium, provided he originl work is properly cied. The uhor oins new esimes on generlizion of Hdmrd, Osrowski, nd Simpson ype inequliies for Lipschizin funcions vi Hdmrd frcionl inegrls. Some pplicions o specil mens of posiive rel numers re lso given.. Inroducion Le rel funcion f e defined on some nonempy inervl I of rel line R. Thefuncionf is sid o e conve on I if inequliy f(+( ) y) f () + ( ) f(y) () holds for ll, y I nd [0,]. Following re inequliies which re well known in he lierure s Hermie-Hdmrd inequliy, Osrowski inequliy, nd Simpson inequliy, respecively. Theorem. Le f:i R R e conve funcion defined on he inervl I of rel numers nd, I wih <.The following doule inequliy holds: f( + ) f () d f () +f(). () Theorem. Le f:i R R e mpping differenile in I,heineriorofI,ndle, I wih <.If f (), [,]; hen he following inequliy holds: f () for ll [,]. + ( ) [( ) ] (3) Theorem 3. Le f : [,] R e four imes coninuously differenile mpping on (, ) nd f (4) = sup (,) f (4) () <. Then he following inequliy holds: 3 [f () +f() +f( + )] 880 f(4) ( )4. f () d In recen yers, mny uhors hve sudied errors esimions for Hermie-Hdmrd, Osrowski, nd Simpson inequliies; for refinemens, counerprs, nd generlizion,see [ 9] nd references herein. The following definiions re well known in he lierure. Definiion 4. Afuncionf : I R R is clled n - Lipschizin funcion on he inervl I of rel numers wih 0if for ll, y I. (4) f () f(y) y (5) For some recen resuls conneced wih Hermie- Hdmrd ype inegrl inequliies for Lipschizin funcions, see [0 3].

Inernionl Journl of Anlysis Definiion 5 (see [4, 5]). A funcion f : I (0, ) R is sid o e GA-conve (geomeric rihmeiclly conve) if f( y )f() + ( ) f(y) (6) for ll, y I nd [0,]. We will now give definiions of he righ-sided nd lef-sided Hdmrd frcionl inegrls which re used hroughou his pper. Definiion 6. Le f L[, ]. The righ-sided nd lef-sided Hdmrd frcionl inegrls J +f nd J f of oder >0 wih > 0redefined y J + f () = J f () = Γ () Γ () (ln ), (ln ), <<, <<, respecively, where Γ() is Gmm funcion defined y Γ() = e (see [6]). 0 In [7], Iscn eslished Hermie-Hdmrd s inequliies for GA-conve funcions in Hdmrd frcionl inegrl forms s follows. Theorem 7. Le f : I (0, ) R e funcion such h f L[, ], where, I wih <.Iff is GA-conve funcion on [, ], hen he following inequliies for frcionl inegrls hold: wih >0. f( ) Γ (+) (ln (/)) {J + f () +J f ()} f () +f() In he inequliy (8), if we ke =,hen we hve he following inequliy: f( ) ln ln (7) (8) f () +f(). (9) orever, in [7], Iscn oined generlizion of Hdmrd, Osrowski, nd Simpson ype inequliies for qusigeomericlly conve funcions vi Hdmrd frcionl inegrls s reled o he inequliy (8). In his pper, he uhor oins new generl inequliies for Lipschizin funcions vi Hdmrd frcionl inegrls s reled o he inequliy (8).. in Resuls Le f : I (0, ) R e -Lipschizin funcion on I; hroughou his secion, we will ke I f (, λ,,, ) = ( λ) [ln + ln ]f() +λ[f() ln +f() ln ] Γ(+) [J f () +J + f ()], S f (,y,λ,,,)=λ f () + ( λ) f(y) Γ (+) ln (/) [J f () +J + f ()], (0) where, I wih <,, y [, ], λ [0,], = λ λ, >0nd Γ is Euler Gmm funcion. Theorem 8. Le f : I (0, ) R e -Lipschizin funcion on I nd, I wih <.Thenforll [,], λ [0,],nd > 0,wehvehefollowinginequliyfor Hdmrd frcionl inegrls: I f (, λ,,, ) {[( λ) λ] (ln ) +(λ ) (ln ) + [λ ( λ) ] (ln ) +( λ) (ln } ). () Proof. Using he hypohesis of f, we hve he following inequliy: I f (, λ,,, ) = ( λ) [ln + ln ]f() +λ[f() ln +f() ln ] [ (ln ) ( λ) f () ln +f () ln (ln ) ] (ln ) (ln )

Inernionl Journl of Anlysis 3 +λ f () ln +f () ln (ln ) (ln ) ( λ) [ (ln ) f () f() (ln ) f () f() ] +λ[ (ln ) f () f() (ln ) f () f() ] ( λ) [ (ln ) ( ) (ln ) ( ) ] +λ[ (ln ) ( ) (ln ) ( ) ] {[( λ) λ] (ln ) +(λ ) (ln ) + [λ ( λ) ] (ln ) + ( λ) (ln } ). orollry 9. In Theorem 8,Ifwekeλ=0,henwege (ln (/)) + (ln (/)) (ln (/)) [J f () +J + f ()] (ln (/)) f () Γ (+) (ln (/)) {[(ln ) (ln ) ] () In his inequliy, (i) if we ke =,hen f () ln ln { ln ln ln + (+ )}. (ii) If we ke =,hen f( ) Γ (+) (ln (/)) [J f () +J + f ()] (ln (/)) { (ln ) (ln ) }. (iii) If we ke = nd =,hen f( ) ln ln ln ln ( + ). orollry 0. In Theorem 8,ifwekeλ=,henwege () ln (/) +f() ln (/) [f (ln (/)) ] Γ (+) (ln (/)) (ln (/)) [J f () +J + f ()] {ln ln [ In his inequliy, if we ke =,hen f () +f() (ln (/)) Γ (+) (ln (/)) { (ln ) (4) (5) (6) (ln ) (ln ) ]}. (7) [J f () +J + f ()] +[ (ln ) (ln ) ]}. (3) [ (ln ) (ln ) ]}. (8)

4 Inernionl Journl of Anlysis Specilly if we ke =in his inequliy, hen we hve f () +f() ln ln ln ln { (ln ) (+ )}. (9) orollry. In Theorem 8, 3 () if we ke = nd λ=/3,hen [f () +f() Γ (+) (ln (/)) +f( )] [J f () +J + f ()] orollry. In Theorem 8,Ifweke=,hen () ln (/) +f() ln (/) ( λ) f () +λ[f ] ln ln ln ln ln ln {[( λ) λ] (ln ) + [λ ( λ) ] (ln ) + ( λ)(+ ) }. (4) 3 3(ln (/)) { (ln ) [ (ln ) (ln ) ]}. (0) Specilly, if we ke =in his inequliy, hen we hve [f () +f() +f( )] ln ln 3 (ln ln ) { (ln ) (+ )}. () () If we ke = nd λ=/,hen [f () +f() Γ (+) (ln (/)) ( ). 4 +f( )] [J f () +J + f ()] () Specilly, if we ke =in his inequliy, hen we hve [f () +f() ( ). 4 +f( )] ln ln (3) Specilly, if we ke = in his inequliy, hen we hve ( λ) f( ) + λ ( ln ln f () +f() ) ln ln λ ( ) [ ln + ( λ)(+ )]. (5) We noe h if we ke λ=0, λ=, λ=/3,ndλ=/in inequliy (5) we oin inequliies (6), (9), (), nd(3), respecively. Le f : I (0, ) R e n -Lipschizin funcion. In he ne heorem, le λ [0,], = λ λ,, y [, ] nd define,λ, >0s follows. () If y,hen,λ (, y) = λ (ln ) + y {( λ) (ln ) (ln } y ) y (ln y ) (ln ) (ln ). (6)

Inernionl Journl of Anlysis 5 () If y,hen () If y,hen,λ (, y) = {(ln ) λ (ln ) } + y {( λ) (ln ) (ln } y ) (ln ) (ln ) (7) (ln ) = λ (ln ) (ln ), y (ln ) (3) y (ln y ) (ln. ) = y {( λ) (ln ) (ln } y ) (3) If y,hen,λ (, y) = {(ln ) λ (ln ) } y ( λ) (ln ) (ln ) (ln ) (ln ). (8) Now, we shll give noher resul for Lipschizin funcions s follows. Theorem 3. Le, y,, λ,,,λ nd funcion f e defined s ove. Then we hve he following inequliy for Hdmrd frcionl inegrls: S f (,y,λ,,,),λ (, y) (ln (/)). (9) Proof. Using he hypohesis of f, wehvehefollowing inequliy: y () If y,hen (ln ) (ln y ) (ln. ) = {(ln ) λ (ln ) } (ln ) (ln ), y (ln ) = y {( λ) (ln ) (ln } y ) y (ln y ) (ln. ) (3) S f (,y,λ,,,) (3) If y,hen = (ln (/)) [f () f()] (ln ) (ln ) (ln (/)) [ [f (y) ] (ln ) f () f() (ln ) (30) = {(ln ) λ (ln ) } (ln ) (ln ), (33) (ln (/)) [ f (y) (ln ] ) (ln ) y (ln ) = (ln ) y ( λ) (ln. ) y (ln ] ). Now, using simple clculions, we oin he following ideniies ( /)(ln(/)) nd ( y /)(ln(/)). Using inequliy (30) nd he ove ideniies ( /)(ln(/)) nd ( y /)(ln(/)), we derive inequliy (9). This complees he proof. Under he ssumpions of Theorem 3, we hve he following corollries nd remrks.

6 Inernionl Journl of Anlysis orollry 4. In Theorem 3,ifweke=,heninequliy (9) reduces he following inequliy: ( λ) f () +λf(y) ln ln,λ (, y). ln (/) (34) orollry 5. In Theorem 3,leδ [/,], = δ δ,nd y= δ δ.then,wehveheinequliy (iii) If δλ,hen L (, λ, δ) = δ δ [( δ) λ ] δ δ ( λ) + (ln (/)) { (ln ) (ln ) δ δ δ δ (ln ) }. (38) s follows. λ f( δ δ )+( λ) f( δ δ ) Γ (+) (ln (/)) [J f () +J + f ()] L (, λ, δ), (i) If λ δ,hen (35) orollry 6. In Theorem 3, ifweke=y=,henwe hve he inequliy [λ + ( λ) ]f() Γ (+) (ln (/)) [J f () +J + f ()] {[λ ( λ) ]+ [ (ln (/)) (ln ) (ln ) ]}. (39) L (, λ, δ) = δ δ λ + δ δ [( λ) ( δ) ] + (ln (/)) { (ln δ δ ) δ δ (ii) If δλδ,hen L (, λ, δ) = δ δ [( δ) λ ]+ δ δ [( λ) ( δ) ]+ { (ln ) δ δ (ln ) (ln ) } (36) (ln (/)) δ δ (ln ) (ln δ δ δ δ ) (ln } ). (37) Remrk 7. In inequliy (39), if we choose λ=/, =, hen we ge inequliy (5). orollry 8. In inequliy (35), if we ke δ =,hen we hve he following weighed Hdmrd-ype inequliies for Lipschizin funcions vi Hdmrd frcionl inegrls: λ f () + ( λ) f () Γ (+) (ln (/)) [J f () +J + f ()] {( λ) λ + (ln (/)) [ (ln ) (ln ]} ). (40) Remrk 9. In inequliy (40), if we choose λ = /, =, hen we ge inequliy (8). 3. Applicion o Specil ens Leusrecllhefollowingspecilmensofwoposiive numers, wih >. () The rihmeic men: A=A(, ) := +. (4) () The geomeric men: G=G(, ) :=. (4)

Inernionl Journl of Anlysis 7 (3) The hrmonic men: (4) The logrihmic men: H=H(, ) := +. (43) L=L(, ) := (5) The idenric men: ln ln. (44) I=I(, ) = e ( /( ) ). (45) To prove he resuls of his secion, we need he following lemm. Lemm 0 (see []). Le f : [,] R e differenile wih f <.Thenf is n -Lipschizin funcion on [, ],where= f. Proposiion. For >>0, λ [0,]nd n,wehve ( λ) Gn (, ) +λa( n, n ) L( n, n ) n n ln ln λ ( ) [ ln +( λ)(a (, ) G(, ))]. (46) Proof. The proof follows y inequliy (5) ppliedforhe Lipschizin funcion f() = n on [, ]. Remrk. Le λ = 0 nd λ = in inequliy (46). Then, using inequliy (9), we hve he following inequliies, respecively, 0L( n, n ) G n (, ) (47) nn ln ln (A (, ) G(, )), 0A( n, n ) L( n, n ) n n ln ln [ ln (48) (A (, ) G(, ))]. Proposiion 3. For >>0nd λ [0,],wehve ( λ) G(e,e )+λa(e,e ) L (e,e )L(, ) e ( +) ( ) [λ ln ln ln +( λ) (A (, ) G(, )) ]. (49) Proof. The proof follows y inequliy (5) ppliedforhe Lipschizin funcion f() = e on [, ]. Remrk 4. Le λ = 0 nd λ = in inequliy (49). Then, using inequliy (9), we hve hefollowing inequliies, respecively, 0L(e,e )L(, ) G(e,e ) e (+) (A (, ) G(, )), ln ln 0A(e,e ) L(e,e )L(, ) e (+) ln ln [ ln (A (, ) G(, ))]. (50) Proposiion 5. For >>0, λ [0,],ndn,wehve ( λ) G (, ) +λh (, ) L(, ) G (, ) (ln ln ) λ ( ) [ ln +( λ)(a (, ) G(, ))]. (5) Proof. The proof follows y inequliy (5) ppliedforhe Lipschizin funcion f() = / on [, ]. Remrk 6. Le λ = 0 nd λ = in inequliy (5). Then, using inequliy (9), we hve he following inequliies, respecively, 0L(, ) G(, ) G (, ) (A (, ) G(, )), (ln ln ) 0G (, ) L(, ) H (, ) G (, ) H (, ) (ln ln ) [ ln (A (, ) G(, ))]. Proposiion 7. For >>0nd λ [0,],wehve ln G (, ) (ln ln ) λ ( ) [ ln +( λ) (A (, ) G(, )) ]. (5) (53) Proof. The proof follows y inequliy (5) ppliedforhe Lipschizin funcion f() = ln on [, ].

8 Inernionl Journl of Anlysis Proposiion 8. For >>e nd λ [0,],wehve ( λ) G (, ) ln G (, ) +λln G(, ) L (, ) ln I (, ) +ln ( ) [λ ln ln ln +( λ) (A (, ) G(, )) ]. (54) Proof. The proof follows y inequliy (5) ppliedforlipschizin funcion f() = ln on [, ]. onflic of Ineress The uhor declres h here is no conflic of ineress regrding he pulicion of his pper. [] K.-L. Tseng, S.-R. Hwng, nd K.-. Hsu, Hdmrd-ype nd Bullen-ype inequliies for Lipschizin funcions nd heir pplicions, ompuers nd hemics wih Applicions, vol.64,no.4,pp.65 660,0. [3] G.-S. Yng nd K.-L. Tseng, Inequliies of hdmrd s ype for Lipschizin mppings, Journl of hemicl Anlysis nd Applicions,vol.60,no.,pp.30 38,00. [4]. P. Niculescu, onveiy ccording o he geomeric men, hemicl Inequliies nd Applicions,vol.3,no.,pp.55 67, 000. [5]. P. Niculescu, onveiy ccording o mens, hemicl Inequliies nd Applicions,vol.6,no.4,pp.57 579,003. [6] A. A. Kils, H.. Srivsv, nd J. J. Trujillo, Theory nd Applicions of Frcionl Differenil Equions, ElsevierB.V., Amserdm, The Neherlnds, 006. [7] İ. İşcn, New generl inegrl inequliies for qusi-geomericlly conve funcions vi frcionl inegrls, Journl of Inequliies nd Applicions,vol.03,no.49,pp. 5,03. References []. Alomri,. Drus, S. S. Drgomir, nd P. erone, Osrowski ype inequliies for funcions whose derivives re s-conve in he second sense, Applied hemics Leers,vol. 3,no.9,pp.07 076,00. []. Avci, H. Kvurmci, nd. E. Özdemir, New inequliies of Hermie-Hdmrd ype vi s-conve funcions in he second sense wih pplicions, Applied hemics nd ompuion,vol.7,no.,pp.57 576,0. [3] Y. hu, G. Wng, nd X. Zhng, Schur conveiy nd hdmrd s inequliy, hemicl Inequliies nd Applicions,vol.3,no.4,pp.75 73,00. [4] İ. İşcn, A new generlizion of some inegrl inequliies for (, m)-conve funcions, hemicl Sciences, vol. 7, no., pp. 8, 03. [5] İ. İşcn, New esimes on generlizion of some inegrl inequliies for (, m)-conve funcions, Journl of onemporry Applied hemics,vol.,no.,pp.53 64,03. [6] İ. İşcn, New esimes on generlizion of some inegrl inequliies for s-conve funcions nd heir pplicions, Inernionl Journl of Pure nd Applied hemics,vol.86, no. 4, pp. 77 746, 03. [7] E. Se,. E. Ozdemir, nd. Z. Srkıy, On new inequliies of Simpson s ype for qusiconve funcions wih pplicions, Tmkng Journl of hemics,vol.43,no.3,pp.357 364, 0. [8].Z.Srkıy,E.Se,nd.E.Ozdemir, Onnewinequliies of Simpson s ype for s-conve funcions, ompuers & hemics wih Applicions,vol.60,pp.9 99,00. [9] Y.-. hu, X.-. Zhng, nd X.-H. Zhng, The hermiehdmrd ype inequliy of GA-conve funcions nd is pplicion, Journl of Inequliies nd Applicions, vol.00, Aricle ID 507560, pges, 00. [0] S. S. Drgomir, Y. J. ho, nd S. S. Kim, Inequliies of Hdmrd sypeforlipschizinmppingsnheirpplicions, Journl of hemicl Anlysis nd Applicions, vol. 45, no., pp. 489 50, 000. [] S.-R. Hwng, K.-. Hsu, nd K.-L. Tseng, Hdmrd-ype inequliies for Lipschizin funcions in one nd wo vriles wih pplicions, Journl of hemicl Anlysis nd Applicions,vol.405,no.,pp.546 554,03.

Advnces in Operions Reserch Hindwi Pulishing orporion hp://www.hindwi.com Advnces in Decision Sciences Hindwi Pulishing orporion hp://www.hindwi.com Journl of Applied hemics Alger Hindwi Pulishing orporion hp://www.hindwi.com Hindwi Pulishing orporion hp://www.hindwi.com Journl of Proiliy nd Sisics The Scienific World Journl Hindwi Pulishing orporion hp://www.hindwi.com Hindwi Pulishing orporion hp://www.hindwi.com Inernionl Journl of Differenil Equions Hindwi Pulishing orporion hp://www.hindwi.com Sumi your mnuscrips hp://www.hindwi.com Inernionl Journl of Advnces in ominorics Hindwi Pulishing orporion hp://www.hindwi.com hemicl Physics Hindwi Pulishing orporion hp://www.hindwi.com Journl of omple Anlysis Hindwi Pulishing orporion hp://www.hindwi.com Inernionl Journl of hemics nd hemicl Sciences hemicl Prolems in Engineering Journl of hemics Hindwi Pulishing orporion hp://www.hindwi.com Hindwi Pulishing orporion hp://www.hindwi.com Hindwi Pulishing orporion hp://www.hindwi.com Discree hemics Journl of Hindwi Pulishing orporion hp://www.hindwi.com Discree Dynmics in Nure nd Sociey Journl of Funcion Spces Hindwi Pulishing orporion hp://www.hindwi.com Asrc nd Applied Anlysis Hindwi Pulishing orporion hp://www.hindwi.com Hindwi Pulishing orporion hp://www.hindwi.com Inernionl Journl of Journl of Sochsic Anlysis Opimizion Hindwi Pulishing orporion hp://www.hindwi.com Hindwi Pulishing orporion hp://www.hindwi.com