On New Inequalities of Hermite-Hadamard-Fejér Type for Harmonically s-convex Functions via Fractional Integrals

Similar documents
Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl:

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

Refinements to Hadamard s Inequality for Log-Convex Functions

Generalized Hermite-Hadamard Type Inequalities for p -Quasi- Convex Functions

The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results

Weighted Inequalities for Riemann-Stieltjes Integrals

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

Positive and negative solutions of a boundary value problem for a

e t dt e t dt = lim e t dt T (1 e T ) = 1

Some new integral inequalities for n-times differentiable convex and concave functions

Hermite-Hadamard type inequalities for harmonically convex functions

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

New Ostrowski Type Inequalities for Harmonically Quasi-Convex Functions

On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Hadamard-Type Inequalities for s Convex Functions I

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

New Inequalities in Fractional Integrals

Bulletin of the. Iranian Mathematical Society

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals

Contraction Mapping Principle Approach to Differential Equations

The Hadamard s inequality for quasi-convex functions via fractional integrals

Some Inequalities variations on a common theme Lecture I, UL 2007

Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable p-quasi-convex Functions

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

MTH 146 Class 11 Notes

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables

REAL ANALYSIS I HOMEWORK 3. Chapter 1

4.8 Improper Integrals

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR

Some New Inequalities of Simpson s Type for s-convex Functions via Fractional Integrals

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a

How to prove the Riemann Hypothesis

LAPLACE TRANSFORMS. 1. Basic transforms

New general integral inequalities for quasiconvex functions

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

RIEMANN-LIOUVILLE FRACTIONAL SIMPSON S INEQUALITIES THROUGH GENERALIZED (m, h 1, h 2 )-PREINVEXITY

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Mathematics 805 Final Examination Answers

T h e C S E T I P r o j e c t

1. Introduction. 1 b b

/

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

FM Applications of Integration 1.Centroid of Area

0 for t < 0 1 for t > 0

Integral inequalities

( ) ( ) ( ) ( ) ( ) ( y )

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Several Answers to an Open Problem

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

On some inequalities for s-convex functions and applications

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Integral inequalities for n times differentiable mappings

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b)

5.1-The Initial-Value Problems For Ordinary Differential Equations

7.2 Riemann Integrable Functions

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl:

CERTAIN NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA FRACTIONAL INTAGRALS

Math 554 Integration

Exponential Decay for Nonlinear Damped Equation of Suspended String

graph of unit step function t

Supplement 4 Permutations, Legendre symbol and quadratic reciprocity

P a g e 5 1 of R e p o r t P B 4 / 0 9

An Integral Two Space-Variables Condition for Parabolic Equations

Citation Abstract and Applied Analysis, 2013, v. 2013, article no

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems

On some refinements of companions of Fejér s inequality via superquadratic functions

Test 2 Review Math 1111 College Algebra

f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T 若敘述為真則證明之, 反之則必須給反例 (Q, ) y > 1 y 1/n y t > 1 n > (y 1)/(t 1) y 1/n < t

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

can be viewed as a generalized product, and one for which the product of f and g. That is, does

arxiv: v1 [math.ca] 28 Jan 2013

Math 61CM - Solutions to homework 9

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales

More Properties of the Riemann Integral

Transcription:

Krelm en ve Müh. Derg. 6(:879 6 Krelm en ve Mühendili Dergii Jornl home ge: h://fd.en.ed.r eerch Aricle n New Ineliie of HermieHdmrdejér ye for Hrmoniclly Convex ncion vi rcionl Inegrl Keirli İnegrller Yol ile Hrmoni Konve oniyonlr için HermieHdmrdejér ili Yeni Eşiizliler Üzerine Mehme Kn Krdeniz eni Üniveriei Memi Bölümü rzon üriye Arc In hi er ome HermieHdmrdejér ye inegrl ineliie for hrmoniclly convex fncion in frcionl inegrl form re oined. Keyword: Hrmoniclly convex fncion HermieHdmrd ineliy HermieHdmrdejér ineliy iemnn Lioville frcionl inegrl Öz B çlışmd eirli inegrller yol ile hrmoni onve foniyonlr için zı HermieHdmrdejér ili yeni eşiizliler elde edilmişir. Anhr Kelimeler: Hrmoni onve foniyonlr HermieHdmrd eşiizliği HermieHdmrdejér eşiizliği iemnnlioville eirli inegrller. Inrodcion Le fi : " e convex fncion defined on he inervl I of rel nmer nd I wih <. he ineliy ( ( f f f fxdx ( (. i well nown in he lierre HermieHdmrd ineliy (Hdmrd 89. he mo wellnown ineliie reled o he inegrl men of convex fncion f re he HermieHdmrd ineliie or heir weighed verion he oclled HermieHdmrdejér ineliie. In (ejér 96 ejér elihed he following ejér ineliy which i he weighed generlizion of Hermie Hdmrd ineliy : heorem. Le f: 6 @ " e convex fncion. hen he ineliy *Correonding Ahor: mn@.ed.r eceived / eliş rihi :.5.6 Acceed / Kl rihi : 8.7.6 ( ( f f gxdx ( fxgxdx ( ( (. gxdx ( hold where g: 6 @ " i nonnegive inegrle nd ymmeric o (/. or ome rel which generlize imrove nd exend he ineliie nd ee (Bomrdelli nd rošnec 9 İşcn İşcn 4 rıy eng e l.. Definiion. (Kil e l. 6. Le f! L6 @. he iemnnlioville inegrl J f nd J f of order > wih re defined y J x f( x ( x f( d x C( Jf( x ( x f( d x C( x reecively where C ( i he mm fncion defined y C ( e d nd J f( x J fx ( fx (.

Kn / n New Ineliie of HermieHdmrdejér ye for Hrmoniclly Convex ncion vi rcionl Inegrl Bece of he wide licion of HermieHdmrd ye ineliie nd frcionl inegrl mny reercher exend heir die o HermieHdmrd ye ineliie involving frcionl inegrl no limied o ineger inegrl. ecenly more nd more HermieHdmrd ineliie involving frcionl inegrl hve een oined for differen cle of fncion; ee (Dhmni İşcn. İşcn 4 rıy e l. ng e l. ng e l.. Definiion. (İşcn 5. Le I ( e rel inervl. A fncion fi : " i id o e hrmoniclly convex if xy fc m f( y ( fx ( x ( y for ll x y I [] nd for ome fixed (]. In (İşcn 4 İşcn gve definiion of hrmoniclly convex fncion nd elihed following Hermie Hdmrd ye ineliy for hrmoniclly convex fncion follow: Definiion. Le I " e rel inervl. A fncion fi : " i id o e hrmoniclly convex if xy fc m f( y ( fx ( (. x ( y for ll x y I nd []. If he ineliy in (. i revered hen f i id o e hrmoniclly concve. heorem. (İşcn 4. Le fi : " " e hrmoniclly convex fncion nd I wih <. If f L[] hen he following ineliie hold: fx ( f ( f ( f dx x (.4 In (Lif e l. 5 Lif e l. gve he following definiion: Definiion 4. A fncion g: 6 @ " " i id o e hrmoniclly ymmeric wih reec o if gx ( g e o x hold for ll x []. In (Chen nd 4 Chn nd reened Hermie Hdmrdejér ineliy for hrmoniclly convex fncion follow: heorem. Le fi : " " e hrmoniclly convex fncion nd I wih <. If f L[] nd g: 6 @ " " i nonnegive inegrle nd hrmoniclly ymmeric wih reec o l hen gx ( fxgx ( ( f dx dx x x f ( f ( gx ( dx. x (.5 In (Kn e l. 6 Kn e l. reened reecively HermieHdmrd ineliy in frcionl inegrl form for hrmoniclly convex fncion HermieHdmrd ejér ineliy in frcionl inegrl form for hrmoniclly convex fncion follow: heorem 4. Le fi : ( " e fncion ch h f L[ ] where I wih <. If f i hrmoniclly convex fncion on [ ] hen he following ineliie for frcionl inegrl hold: C^ h f f ( f ( J f% h / J f% h / ^ h^ h ^ h^ h (.6 wih > nd h(x/x x! : heorem 5. Le f: 6 @ " e hrmoniclly convex fncion wih < nd f L[ ]. If g: 6 @ " i nonnegive inegrle nd hrmoniclly ymmeric wih reec o hen he following ineliie for frcionl inegrl hold: f J g h / J 7 g h / h (.7 7J fg h / J fg h / h % ^ h^ f ( f ( 7J g% h / J g% h / ^ h^ h ^ h^ wih > nd h(x/x x! : Lemm. (Kn e l. 6. Le fi : ( " e differenile fncion on I o ch h fl! L6 @ where I nd <. If g: 6 @ " i inegrle nd hrmoniclly ymmeric wih reec o hen he following eliy for frcionl inegrl hold: f J g h / J 7 g h / h 7J fg h / J fg h / h c ^ g% hh^hdm^f% hhl^dhd C( c ` j ^g% hh^hdm^f% hhl^dd h (.8 88 Krelm en Müh. Derg. 6; 6(:879

Kn / n New Ineliie of HermieHdmrdejér ye for Hrmoniclly Convex ncion vi rcionl Inegrl wih > nd h(x/x x! : In hi er we oin ome new ineliie conneced wih he lefhnd ide of HermieHdmrdejér ye inegrl ineliy for hrmoniclly convex fncion in frcionl inegrl.. el hrogho hi ecion we e g g( for he!6 @ conino fncion g: 6 @ ". heorem 6. Le fi : ^ h " e differenile fncion on I o ch h fl! L6 @ where I nd <. If fl i hrmoniclly convex on [] g: [] i conino nd hrmoniclly ymmeric wih reec o hen he following ineliy for frcionl inegrl hold: f J ( g h(/ J 7 % ( g h(/ % A 7J ( fg% h(/ J ( fg h( / % A (. ( g 6 ( ( ( ( ( C fl C fl @ C where C ( ( d d ( ( ( ( C( (. ( d ( ( ( d ( ( (. wih < nd h(x /x x! : Proof. rom Lemm we hve f J g h / J 7 % g h / ^ h^ h h A 7J fg h / J fg h / h c ( ^g% hh( dm h l ( d C( c ( ^g% hh( dm h( l d c ( dm h( l d g C( c ( dm h( l d ( f ( g d l C( ( f ( d l ^ h eing nd d d give f J ( g h(/ J 7 % ( g h( / % A 7J ( fg% h(/ J ( fg h( / % A ( ( ( flc m d g ( ( C ( flc m d ( ( ( (.4 ince fl i hrmoniclly convex on [] we hve flc m fl( ( fl ( (.5 ( If we e (.5 in (.4 we hve f J ( g h(/ J 7 % ( g h( / % A 7J ( fg% h(/ J ( fg h( / % A [ fl( ( fl( ] d g ( ( ( ( C ( [ fl( ( fl( ] d ( ( (.6 If we e (. nd (. in (.6 we hve (.. hi comlee he roof. Corollry. In heorem 6: ( If we e we hve he following Hermie Hdmrdejér ineliy for hrmoniclly convex fncion which i reled o he lefhnd ide of (.5: gx ( fxgx ( ( f dx dx x x g ( [ C( fl ( C( fl( ] ( If we e g(x we hve following HermieHdmrd ineliy for hrmoniclly convex fncion in frcionl inegrl form which i reled o he lefhnd ide of (.6: ( J C ( f h(/ % f * 4 J ( f h(/ % ( [ C ( f l ( C ( f l ( ] ( If we e nd g(x we hve he following HermieHdmrd ineliy for hrmoniclly convex fncion which i reled o he lefhnd ide of :(.4 fx ( f dx ( x 6 C( fl( C( fl( @ Krelm en Müh. Derg. 6; 6(:879 89

Kn / n New Ineliie of HermieHdmrdejér ye for Hrmoniclly Convex ncion vi rcionl Inegrl heorem 7. Le fi : ^ h " e differenile fncion on I o ch h fl! L6 @ where I nd <. If fl $ i hrmoniclly convex on [] g: 6 @ " i conino nd hrmoniclly ymmeric wih reec o hen he following ineliy for frcionl inegrl hold: f ( f ( 6J/ ( g% h(/ J/ ( g% h( / @ 6J/ ( fg% h(/ J/ ( fg % h( / @ C4( fl ( C ( g ( e C5( fl ( C( C7( fl ( ( e C8( fl ( where C ( C ( (.7 ( ( d ( ( d 4 C5( ( ( d ( ( ( ( ( d (.8 (.9 ( C7( d ( ( (. ( C8( d ( ( wih > nd h(x /x x! : Proof. Uing (.4 ower men ineliy nd he hrmoniclly convexiy of fl i follow h f J ( g h(/ J 7 % ( g h( / % A 7J ( fg% h(/ J ( fg h( / % A flc m d g ( ( ( ( C^ h ( flc m d ( ( ( d dn ( ( f d g ( ( ( ( d lc m n C^ h ( d dn ( ( ( d flc m dn ( ( ( d dn ( ( [ f ( ( f ( ] d g ( ( ( d l l n C^ h ( d dn ( ( ( d [ fl( ( fl( ] dn ( ( d dn ( ( J N d fl K ( ( ( K ( d f ( g ( ( ( K l L P C ^ h ( d dn ( ( J ( N K d fl ( ( ( K ( K d fl ( L ( ( P (. If we e (.8 (.9 nd (. in (. we hve (.7. hi comlee he roof. Corollry. In heorem 7: ( If we e we hve he following Hermie Hdmrdejér ineliy for hrmoniclly convex fncion which i reled o he lefhnd ide of (.5: gx ( fxgx ( ( f dx dx x x C4( fl ( C ( e C5( fl ( g ( C7( fl ( ( e C8( fl ( ( If we e g(x we hve following HermieHdmrd ineliy for hrmoniclly convex fncion in frcionl inegrl form which i reled o he lefhnd ide of (.6: ( J C ( f h(/ % f * 4 J ( f h(/ % ( ( ( ( C C4 fl e C5( fl ( C7( fl ( ( e C8( fl ( 9 Krelm en Müh. Derg. 6; 6(:879

Kn / n New Ineliie of HermieHdmrdejér ye for Hrmoniclly Convex ncion vi rcionl Inegrl ( If we e nd g(x we hve he following HermieHdmrd ineliy for hrmoniclly convex fncion which i reled o he lefhnd ide of (.4: fx ( f dx ( x C4( fl ( C ( C5( fl (. C7( fl ( ( C8( fl ( e cn e noher ineliy for > follow: heorem 8. Le fi : ( " e differenile fncion on I o ch h fl! L6 @ where I nd <. If fl i hrmoniclly convex on [ ] g: 6 @ " i conino nd hrmoniclly ymmeric wih reec o hen he following ineliy for frcionl inegrl hold: f ( f ( 6J/ ( g% h(/ J/ ( g% h( / @ 6J/ ( fg% h(/ J/ ( fg % h( / @ fl( ( fl( C9 ( g ( < ( C( ( fl( fl( C( < ( where C ( d (. ( ( 9 dn C( ( d dn ( ( wih > h(x /x x! : D nd / /. (. Proof. Uing (.4 Hölder ineliy nd he hrmoniclly convexiy of fl i follow h f J ( g h(/ J 7 % ( g h( / % A 7J ( fg% h(/ J ( fg h( / % A flc m d g ( ( ( ( C^ h ( flc m d ( ( ( g ( C^ h < d d d f ( ( ( ( n d lc m dn ( ( ( d f ( ( n c lc m dm < d d g ( C ^ h ( ( ( ( ( dn c fl( ( fl( dm dn c fl( ( fl( dm (.4 Clcling following inegrl we hve fl( ( fl( d fl( ( fl( ( fl( ( fl( d ( fl( fl( ( (.5 (.6 If we e (. (.5 nd (.6 in (.4 we hve (.. hi comlee he roof. Corollry In heorem 8: ( If we e we hve he following Hermie Hdmrdejér ineliy for hrmoniclly convex fncion which i reled o he lefhnd ide of (.5: gx ( f( xgx ( f dx dx x x fl( ( fl( C ( < 9 ( ( ( fl( fl( C( < ( ( If we e g(x we hve following HermieHdmrd ineliy for hrmoniclly convex fncion in frcionl inegrl form which i reled o he lefhnd ide of (.6: ( J C ( f h(/ % f * 4 J ( f h(/ % ( ( ( ( ( C fl fl 9 < ( ( fl( fl( C( < ( ( If we e nd g(x we hve he following HermieHdmrd ineliy for hrmoniclly convex fncion which i reled o he lefhnd ide of (.4: Krelm en Müh. Derg. 6; 6(:879 9

Kn / n New Ineliie of HermieHdmrdejér ye for Hrmoniclly Convex ncion vi rcionl Inegrl fx ( f dx x fl( ( fl( C ( < 9 ( (. ( fl( fl( C( < (. eference Bomrdelli M. rošnec. 9. Proerie of hconvex fncion reled o he Hermie Hdmrd ejér ineliie. Com. Mh. Al. 58: 869877. Chen.. 4. ejér nd HermieHdmrd ye ineliie for hrmoniclly convex fncion. J. Al. Mh. volme 4 ricle id:8686. Dhmni Z.. n Minowi nd HermieHdmrd inegrl ineliie vi frcionl inegrion. Ann. nc. Anl. (: 558. ejér L. 96. Uer die orierreihen. II. Mh. Nrwie. Anz Ungr. Ad. i 4: 699 (in Hngrin. Hdmrd J. 89. Éde r le roriéé de foncion enière e en riclier d ne foncion conidérée r iemnn. J. Mh. Pre Al. 58: 75. İşcn İ.. New eime on generlizion of ome inegrl ineliie for convex fncion nd heir licion. In. J. Pre Al. Mh. 86(4: 77746. İşcn İ. 4. ome new generl inegrl ineliie for hconvex nd hconcve fncion. Adv. Pre Al. Mh. 5(: 9. İşcn İ.. enerlizion of differen ye inegrl ineliiefor convex fncion vi frcionl inegrl. Al. Anl. doi:.8/68..85785. İşcn İ. 4. n generlizion of differen ye inegrl ineliie for convex fncion vi frcionl inegrl. Mh. ci. Al. ENo. (: 5567. İşcn İ.. 4. HermieHdmrd ye ineliie for hrmoniclly convex fncion vi frcionl inegrl. Al. Mh. Com. 8: 744. İşcn İ. 4. HermieHdmrd ye ineliie for hrmoniclly convex fncion. Hce. J. Mh.. 4 (6: 9594. İşcn İ. 5. rowi ye ineliie for hrmoniclly convex fncion. Konr. J. Mh olme No : 674. Kil AA. rivv HM rjillo JJ. 6. heory nd licion of frcionl differenil eion. Elevier Amerdm. Kn M. İşcn İ. özüo NY. özüo U. 6. n new ineliie of HermieHdmrdejer ye for hrmoniclly convex fncion vi frcionl inegrl ringerl 5(65 9. Lif MA. Drgomir. Momoni E. 5. ome ejér ye ineliie for hrmonicllyconvex fncion wih licion o ecil men MIA e. e. Coll. 8 Aricle 4 7. rıy MZ.. n new Hermie Hdmrd ejér ye inegrl ineliie. d. Univ. BeBolyi Mh. 57(: 77 86. rıy MZ. e E. Yldız H. Bş N.. Hermie Hdmrd ineliie for frcionl inegrl nd reled frcionl ineliie. Mh. Com. Mod. 57(9: 447. eng KL. Yng. H KC.. ome ineliie for differenile ming nd licion o ejér ineliy nd weighed rezoidl forml. iw. J. Mh. 5(4: 77747. ng J. Li. ecn M. Zho Y.. HermieHdmrdye ineliie for iemnnlioville frcionl inegrl vi wo ind of convexiy. Al. Anl. 9(: 45. ng J. Zh C. Zho Y.. New generlized Hermie Hdmrd ye ineliie nd licion o ecil men. J. Inel. Al. 5( 5. 9 Krelm en Müh. Derg. 6; 6(:879