ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Similar documents
Copyright 2004 by Oxford University Press, Inc.

ELCT 503: Semiconductors. Fall 2014

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Transfer Characteristic

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

1.4 Small-signal models of BJT

Lecture 27 Bipolar Junction Transistors

Graphical Analysis of a BJT Amplifier

Week 11: Differential Amplifiers

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

Flyback Converter in DCM

55:141 Advanced Circuit Techniques Two-Port Theory

Common Base Configuration

V V. This calculation is repeated now for each current I.

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

55:141 Advanced Circuit Techniques Two-Port Theory

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

EE C245 ME C218 Introduction to MEMS Design

Key component in Operational Amplifiers

College of Engineering Department of Electronics and Communication Engineering. Test 2

Physics Courseware Electronics

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

T-model: - + v o. v i. i o. v e. R i

VI. Transistor Amplifiers

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

Two Port Characterizations

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

MPSA13 MPSA14 CASE 29-02, STYLE 1 TO-92 (TO-226AA) DARLINGTON TRANSISTOR MAXIMUM RATINGS THERMAL CHARACTERISTICS ON CHARACTERISTICS) 1) NPN SILICON

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FEEDBACK AMPLIFIERS. v i or v s v 0

Prof. Paolo Colantonio a.a

5.6 Small-Signal Operation and Models

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

Week 9: Multivibrators, MOSFET Amplifiers

Lecture 010 ECE4430 Review I (12/29/01) Page 010-1

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

Chapter 13 Small-Signal Modeling and Linear Amplification

Output Stages and Power Amplifiers

Design of Analog Integrated Circuits

Lecture 10: Small Signal Device Parameters

Feedback Principle :-

55:041 Electronic Circuits

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

Solid State Device Fundamentals

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

55:041 Electronic Circuits

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Refinements to Incremental Transistor Model

Phan Nhu Quan, PhD Dec 02, 2017

Analytical Formulas for the Drain Current of Silicon Nanowire MOSFET

Small signal analysis

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Measurement and Model Identification of Semiconductor Devices

CMOS ANANLOG INTEGRATED FILTERS

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Lecture 8: Small signal parameters and hybrid-π model Lecture 9, High Speed Devices 2016

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Why working at higher frequencies?

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Bipolar Junction Transistor (BJT) - Introduction

Section 1: Common Emitter CE Amplifier Design

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

Lecture 14: More MOS Circuits and the Differential Amplifier

Energy Storage Elements: Capacitors and Inductors

Biasing the CE Amplifier

6.01: Introduction to EECS I Lecture 7 March 15, 2011

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

University of Toronto. Final Exam

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

ES 330 Electronics II Homework 04 (Fall 2017 Due Wednesday, September 27, 2017)

Transistor Characteristics and A simple BJT Current Mirror

Introduction to circuit analysis. Classification of Materials

( ) = ( ) + ( 0) ) ( )

Built in Potential, V 0

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

IV. Diodes. 4.1 Energy Bands in Solids

6.01: Introduction to EECS 1 Week 6 October 15, 2009

ELG3336: Op Amp-based Active Filters

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

Homework Assignment 08

N- and P-Channel 20-V (D-S) MOSFET

S-Domain Analysis. s-domain Circuit Analysis. EE695K VLSI Interconnect. Time domain (t domain) Complex frequency domain (s domain) Laplace Transform L

Digital Integrated CircuitDesign

(8) Gain Stage and Simple Output Stage

Narayana IIT Academy INDIA Sec: Sr. IIT_IZ JEE-MAIN Date: Time: 07:30 AM to 10:30 AM Cumulative Test Max.Marks: 360

Lecture 5: Operational Amplifiers and Op Amp Circuits

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

3.2 Terminal Characteristics of Junction Diodes (pp )

Characteristics of Active Devices

Transcription:

241 ANALO LTRONI I Lectures 2&3 ngle Transstor Amplfers R NORLAILI MOH NOH

3.3 Basc ngle-transstor Amplfer tages 3 dfferent confguratons : 1. ommon-emtter ommon-source Ib B R I d I c o R o gnal appled to : B Amplfed output taken from : 2

2. ommon-collector (emtter follower) ommon-dran (source follower) R B R L o R L o gnal appled to : B Amplfed output taken from : 3

3. ommon-base ommon-gate R R B o o gnal appled to : Amplfed output taken from : 4

ommon-emtter confguraton Ib (n) (p) B In forward actve : I cisexp Τ R I s c s v Ic I b I I exp βf βf Τ β o (n) F o IR c v I saturated current forward current gan R I exp s Τ When o approaches 0 (.e. ce approaches 0), the -B juncton becomes feedback and the devce enters saturaton. Once the transstor becomes saturated, the output voltage and collector current take on nearly constant values : o (sat) (sat) I c R I 5

o () ut-off regon (sat) (n) Forward-actve regon I b (p) Ic B o (n) at.regon 0.5 1 1.5 () R When o approaches 0 (.e. ce approaches 0), the -B juncton becomes feedback and the devce enters saturaton. Once the transstor becomes saturated, the output voltage and collector current take on nearly constant values : o (sat) (sat) I c R When 0, the transstor operates n the cut off state (as B- and B- junctons are both reverse bas) and no current flows other than leakage current I O. 6

In saturaton : c o I (sat) R (sat) fxed value o () (sat) ) ut-off regon Forward-actved regon at. regon 0.5 1 1.5 When s hgh and > o, the -B juncton s forward bas. Thus, devce s n the saturaton regon. As s hgh, I b s also hgh. Forward current gan β F I c /I b. Forward current gan β F reduces as transstor leaves the forward-actve regon of operaton and moves nto saturaton. () Ib (n) (p) B R I (n) c o In the forward-actve regon, small changes n the nput voltage can gve rse to large changes n the output voltage. The crcut thus provdes voltage gan. When 0, I b 0 and I c 0. I c R o and snce I c 0, o Ths s the devce operatng n the cut off regon.. 7

o () (sat) ut-off regon Forward-actve regon at.regon 0.5 1 1.5 o IR c R I exp s p Τ When, I When, I 0 c o c o () In the forward actve regon, v I cisexp Τ I I c b β F Ib (n) (p) B R Ic (n) o 8

mall-sgnal crcut of ommon-mtter I R (n) (p) B R Ic (n) o v R rπ g m v v 1 1 rο c Rc o vo Input resstance Transconductance, o v r π β o g m v gmv v 1 rπ 1 g o mv g 1 mv R g m v v v g m v 0 o R r 9

o v rπ v 1 g v m 1 rο Rc vo Ro t rο Rc v t Output resstance, Ro R o v t // r o R t v 0 10

Open-crcut or unloaded voltage gan, a v v gmv r v v o 0 //R 1 o o nce 1, then a v -g m r o // R. If R, then I 1 g r η lm a A A v m o T I T R I c dc collector current at the operatng pont T thermal voltage A arly voltage o η kt v gm v rπ v 1 1 q A rο Rc vo 11

lm a 1 v-gmr o- - R η A T represents the max. low-freq. voltage gan obtanable from the transstor. It s ndependent of the bas current for BJT and the magntude s 5000 for typcal npn devces. s/c current gan: a o gmv1 gmr v v π βο 1 o 0 rππ B o v v 1 r π gm1 r o R v o o example on pg. 178. 12

omparson between the MO and BJT small sgnal models : BJT MO 1 r π nput resstance nput resstance from to 2 g m of BJT s hgher than that of MO based wth the same current. Hence, hgh-gan amplfers wth BJTs are easer to obtan than wth MO. B r π v gmv r ο gs g v m gs ro 13

3.3.2 ommon-ource () confguraton R o I I I d I o o v g m ro R vo o () ut-off regon Actve regon 0,I d 0 cutoff operaton o -I d R d Trode regon t t 1 2 3 () 14

I I d R I o o o () t ut-off regon t 1 2 3 Actve regon () Trode regon > t, I d flows actve/sat. operaton o and > - t o I d R For actve devces, I kw 2 ov 2L 2 o kw ov R 2L kμ nox ov t t ov o 15

o () BJT ut-off regon o () MOFT ut-off regon Forward-actve regon Actve regon (sat) at.regon 0.5 1 1.5 () t t 1 2 3 Trode regon () o and < - t trode operaton I kw 2 2L 2 ( t ) 2L Output resstance s low and small-sgnal voltage gan drops dramatcally. The slope of ths transfer characterstc at any operatng pont s the small sgnal voltage gan at that pont. As slope for MO < slope for BJT, a v(mo) <a v(bjt) 16

R o I d I I o o v g m ro R vo o m m g v g v v v o 0 v R R t o v ro R t v 0 m o/c or unloaded voltage gan, ( o ) v g v r R a g r R o m v m o v v o 0. Hence, transconductance of the crcut, m transconductance of the transstor, g m v0 r o R g 0 m t R o 17 v t

a g ( r R ) v m o lm a -g v mr If R o s very large, R whch s the max. possble voltage gan of a one-stage amplfer. g m 2Iμ W nox L gm I r A o 1 λi I r 1 o I a I v I a 1 v I lm a A v-g mr o- For BJT, R T Therefore, max. voltage gan of MOFT s dependent on the dran current whereas max. voltage gan of BJT s ndependent of I. 18

For MO: g W m k L ( ) I kw 2L t ( ) 2 gm 2 2 I t r 1 A o λι Ι ( ) ov Hence, lm a -g r -g - R I t A 2 A v m o m O For BJT: lm Hence, R T 26m O 200 m a v_mo < a v_bjt a A v-gmr o- T (o example page 182) 19

3.3.3 ommon-base confguraton v B Rc vo B rπ gmv v 1 1 rο I/p sgnal appled to. O/p taken from. B ted to ac gnd. The hybrd-π model provdes an accurate representaton of the small-sgnal behavor of the transstor ndependent of the crcut confguraton. However, for the common-b, the hybrd-π model becomes tougher to analyze as the dependent current source s connected between the /p and o/p termnals. 20

To smplfy the analyss of a common-b (B) amplfer, use a T- model nstead. The T-model at low freq: re g v m 1 v 1 Hybrd-π π model at low freq: r r π e 1g r r β ο π g m m π r e r β 1 β α 1g r g 1 g π ο ο ο m π m m gm 1g βο βο m g m 21