Symbolic Computation of Lax Pairs of Nonlinear Systems of Partial Difference Equations using Multidimensional Consistency

Similar documents
Symbolic Computation of Lax Pairs of Systems of Partial Difference Equations Using Consistency Around the Cube

Symbolic Computation of Lax Pairs of Integrable Nonlinear Partial Difference Equations on Quad-Graphs

SYMBOLIC COMPUTATION OF LAX PAIRS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS

arxiv: v1 [nlin.si] 25 Mar 2009

Symmetry Reductions of Integrable Lattice Equations

Soliton solutions to the ABS list

ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS

arxiv:nlin/ v1 [nlin.si] 17 Sep 2006

From discrete differential geometry to the classification of discrete integrable systems

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

GEOMETRY OF DISCRETE INTEGRABILITY. THE CONSISTENCY APPROACH

LOWELL WEEKLY JOURNAL.

Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations

Integrability of P Es

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

New Exact Solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli Equation

Multiple-Soliton Solutions for Extended Shallow Water Wave Equations

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions

LOWELL WEEKLY JOURNAL.

Introduction to the Hirota bilinear method

OWELL WEEKLY JOURNAL

group: A new connection

LOWELL WEEKLY JOURNAL

Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN

Continuous and Discrete Homotopy Operators with Applications in Integrability Testing. Willy Hereman

SYMBOLIC VERIFICATION OF OPERATOR AND MATRIX LAX PAIRS FOR SOME COMPLETELY INTEGRABLE NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Two Posts to Fill On School Board

Generalized bilinear differential equations

Solving Nonlinear Wave Equations and Lattices with Mathematica. Willy Hereman

Department of mathematics MA201 Mathematics III

Elliptic integrable lattice systems

MACSYMA PROGRAM FOR THE PAINLEVÉ TEST FOR NONLINEAR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

SYMBOLIC SOFTWARE FOR SOLITON THEORY: INTEGRABILITY, SYMMETRIES CONSERVATION LAWS AND EXACT SOLUTIONS. Willy Hereman

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

Relativistic Collisions as Yang Baxter maps

Conservation laws for difference equations. Peter Hydon (Surrey) Elizabeth Mansfield (Kent) Olexandr Rasin (Bar-Ilan) Tim Grant (Surrey)

arxiv: v1 [nlin.si] 2 May 2017

The elliptic sinh-gordon equation in the half plane

NUMERICAL METHODS FOR SOLVING NONLINEAR EVOLUTION EQUATIONS

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.

Second Order Lax Pairs of Nonlinear Partial Differential Equations with Schwarzian Forms

Weak Lax pairs for lattice equations

LOWELL WEEKLY JOURNAL

Classification of integrable equations on quad-graphs. The consistency approach

Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o

LOWELL WEEKI.Y JOURINAL

On Miura Transformations and Volterra-Type Equations Associated with the Adler Bobenko Suris Equations

Symbolic Computation of Recursion Operators of Nonlinear Differential-Difference Equations

Hamiltonian partial differential equations and Painlevé transcendents

E-001 ELECTRICAL SYMBOL LEGEND SCIENCE BUILDING RENOVATION H PD SEISMIC REQUIREMENTS FOR ELECTRICAL SYSTEMS PER IBC-2012/ASCE 7-10

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES

arxiv: v2 [math-ph] 24 Feb 2016

LOWELL WEEKLY JOURNAL

Hamiltonian partial differential equations and Painlevé transcendents

Wronskian, Grammian and Pfaffian Solutions to Nonlinear Partial Differential Equations

Module 2: First-Order Partial Differential Equations

Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction

Introduction of Partial Differential Equations and Boundary Value Problems

THE LAX PAIR FOR THE MKDV HIERARCHY. Peter A. Clarkson, Nalini Joshi & Marta Mazzocco

E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk

A. H. Hall, 33, 35 &37, Lendoi

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations

A Short historical review Our goal The hierarchy and Lax... The Hamiltonian... The Dubrovin-type... Algebro-geometric... Home Page.

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

SIGNATURES OVER FINITE FIELDS OF GROWTH PROPERTIES FOR LATTICE EQUATIONS

2. Examples of Integrable Equations

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?

A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

Algorithmic Computation of Symmetries, Invariants and Recursion Operators for Systems of. Nonlinear Evolution and Differential-Difference.

II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa

The first three (of infinitely many) conservation laws for (1) are (3) (4) D t (u) =D x (3u 2 + u 2x ); D t (u 2 )=D x (4u 3 u 2 x +2uu 2x ); D t (u 3

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.

REVIEW OF DIFFERENTIAL CALCULUS

QUADRATIC EQUATIONS AND MONODROMY EVOLVING DEFORMATIONS

Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China

Rogue periodic waves for mkdv and NLS equations

A new integrable system: The interacting soliton of the BO

Math 121 Homework 5: Notes on Selected Problems

Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations

A Generalization of the Sine-Gordon Equation to 2+1 Dimensions

PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >

arxiv: v1 [nlin.si] 27 Nov 2016

Lacunary Polynomials over Finite Fields Course notes

Multisolitonic solutions from a Bäcklund transformation for a parametric coupled Korteweg-de Vries system

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

arxiv:math/ v1 [math.qa] 8 May 2006

PALACE PIER, ST. LEONARDS. M A N A G E R - B O W A R D V A N B I E N E.

Superintegrable 3D systems in a magnetic field and Cartesian separation of variables

Nonlocal Symmetry and Interaction Solutions of a Generalized Kadomtsev Petviashvili Equation

LOWELL WEEKLY JOURNAL

MANY BILLS OF CONCERN TO PUBLIC

The Construction of Alternative Modified KdV Equation in (2 + 1) Dimensions

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER

(EccL HUt, Mosheim, p. 40.) AGC3. Rgnres. We shall now proceed to show two things:

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations

International Conference on SYMMETRIES & INTEGRABILITY IN DIFFERENCE EQUATIONS [SIDE - XI] (June 16-21, 2014)

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations.

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations

Painlevé Test for the Certain (2+1)-Dimensional Nonlinear Evolution Equations. Abstract

Logistic function as solution of many nonlinear differential equations

Transcription:

Symbolic Computation of Lax Pairs of Nonlinear Systems of Partial Difference Equations using Multidimensional Consistency Willy Hereman Department of Applied Mathematics and Statistics Colorado School of Mines Golden, Colorado, U.S.A. whereman@mines.edu http://inside.mines.edu/ whereman/ IMCA, Lima, Peru Tuesday, November 28, 2017, 4:00p.m.

Collaborators Terry Bridgman (Ph.D. student, CSM) Reinout Quispel & Peter van der Kamp La Trobe University, Melbourne, Australia This presentation is made in TeXpower

Outline Origins of nonlinear P Es Classification of integrable nonlinear P Es in 2D Lax pairs of nonlinear PDEs & gauge equivalence Lax pair of nonlinear P Es & gauge equivalence Examples of Lax pairs of nonlinear P Es Algorithmic computation of Lax pairs (Nijhoff 2001, Bobenko & Suris 2001) Software demonstration Conclusions and future work Addendum: Additional examples

Origins of nonlinear P Es full discretizations of completely integrable PDEs (Ablowitz, Ladik, Taha) fully discretized bilinear equations (Hirota) direct linearization of completely integrable PDEs (Quispel, Nijhoff) superposition principle (Bianchi permutability) for auto-bäcklund transformations between solutions of a completely integrable PDE classification of multi-dimensionally consistent P Es (Adler, Bobenko, Suris)

Example: discrete potential Korteweg-de Vries (pkdv) equation (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0 u is dependent variable or field (scalar case) n and m are lattice points p and q are parameters Notation: (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (x, x 1, x 2, x 12 ) Alternate notations (in the literature): (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (u, ũ, û, ˆũ) (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (u 00, u 10, u 01, u 11 )

Example: discrete pkdv equation (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0 Short: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 x 2 = u n,m+1 p x 12 = u n+1,m+1 q q x = u n,m p x 1 = u n+1,m

Concept of Consistency Around the Cube Superposition of auto-bäcklund transformations between 4 solutions x, x 1, x 2, x 3 (3 parameters: p, q, k) x 23 x 123 x 2 x 12 q x 3 x 13 k p x x 1

Introduce a third lattice variable l View u as dependent on three lattice points: n, m, l. So, x = u n,m x = u n,m,l Move in three directions: n n + 1 over distance p m m + 1 over distance q l l + 1 over distance k (spectral parameter) Require that the same P E holds on the front, bottom, and left faces of the cube Require consistency for the computation of x 123 = u n+1,m+1,l+1 (3 ways same answer)

x 23 x 123 x 2 x 12 q x 3 x 13 k p x x 1

Verification of Consistency Around the Cube Example: discrete pkdv equation Equation on front face of cube: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 Solve for x 12 = x p2 q 2 x 1 x 2 Compute x 123 : x 12 x 123 = x 3 p2 q 2 x 13 x 23 Equation on floor of cube: (x x 13 )(x 1 x 3 ) p 2 + k 2 = 0 Solve for x 13 = x p2 k 2 x 1 x 3 Compute x 123 : x 13 x 123 = x 2 p2 k 2 x 12 x 23

Equation on left face of cube: (x x 23 )(x 3 x 2 ) k 2 + q 2 = 0 Solve for x 23 = x q2 k 2 x 2 x 3 Compute x 123 : x 23 x 123 = x 1 q2 k 2 x 12 x 13 Verify that all three coincide: x 123 =x 1 q2 k 2 x 12 x 13 =x 2 p2 k 2 x 12 x 23 =x 3 p2 q 2 Upon substitution of x 12, x 13, and x 23 : x 13 x 23 x 123 = p2 x 1 (x 2 x 3 ) + q 2 x 2 (x 3 x 1 ) + k 2 x 3 (x 1 x 2 ) p 2 (x 2 x 3 ) + q 2 (x 3 x 1 ) + k 2 (x 1 x 2 ) Consistency around the cube is satisfied!

Tetrahedron property x 123 = p2 x 1 (x 2 x 3 ) + q 2 x 2 (x 3 x 1 ) + k 2 x 3 (x 1 x 2 ) p 2 (x 2 x 3 ) + q 2 (x 3 x 1 ) + k 2 (x 1 x 2 ) is independent of x. Connects x 123 to x 1, x 2 and x 3. x 23 x 123 x 2 x 3 x 12 q k x 13 x p x 1

Classification of 2D scalar nonlinear P Es Adler, Bobenko, Suris (ABS) 2003, 2007 Consider a family P Es: Q(x, x 1, x 2, x 12 ; p, q) = 0 Assumptions (ABS 2003): 1. Affine linear Q(x, x 1, x 2, x 12 ; p, q) = a 1 xx 1 x 2 x 12 + a 2 xx 1 x 2 +... + a 14 x 2 + a 15 x 12 + a 16 2. Invariant under D 4 (symmetries of square) Q(x, x 1, x 2, x 12 ; p, q) = ɛq(x, x 2, x 1, x 12 ; q, p) ɛ, σ = ±1 3. Consistency around the cube = σq(x 1, x, x 12, x 2 ; p, q)

Result of the ABS Classification List H H1 (x x 12 )(x 1 x 2 ) + q p = 0 H2 (x x 12 )(x 1 x 2 )+(q p)(x+x 1 +x 2 +x 12 )+q 2 p 2 =0 H3 p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) + δ(p 2 q 2 ) = 0

List A A1 p(x+x 2 )(x 1 +x 12 ) q(x+x 1 )(x 2 +x 12 ) δ 2 pq(p q)=0 A2 (q 2 p 2 )(xx 1 x 2 x 12 + 1) + q(p 2 1)(xx 2 + x 1 x 12 ) p(q 2 1)(xx 1 + x 2 x 12 )=0

List Q Q1 p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+δ 2 pq(p q) = 0 Q2 p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+pq(p q) (x+x 1 +x 2 +x 12 ) pq(p q)(p 2 pq+q 2 )=0 Q3 (q 2 p 2 )(xx 12 +x 1 x 2 )+q(p 2 1)(xx 1 +x 2 x 12 ) p(q 2 1)(xx 2 +x 1 x 12 ) δ2 4pq (p2 q 2 )(p 2 1)(q 2 1)=0

Q4 (mother) Hietarinta s Parametrization sn(α + β; k) (x 1 x 2 + xx 12 ) sn(α; k) (xx 1 + x 2 x 12 ) sn(β; k) (xx 2 + x 1 x 12 ) + sn(α; k) sn(β; k) sn(α + β; k)(1 + k 2 xx 1 x 2 x 12 )=0 where sn(α; k) is the Jacobi elliptic sine function with modulus k. Other parameterizations (Adler, Nijhoff, Viallet) are given in the literature.

Systems of P Es Example: Schwarzian-Boussinesq System y x 1 z 1 + z = 0 y x 2 z 2 + z = 0 x y 12 (y 1 y 2 ) y (p x 1 y 2 q x 2 y 1 ) = 0 System has three dependent variable x, y, and z. Thus, x = (x, y, z). System has two single-edge equations and one full-face equation. System is consistent around the cube (CAC).

Peter D. Lax (1926-) Seminal paper: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968) 467-490

Refresher: Lax Pairs of Nonlinear PDEs Historical example: Korteweg-de Vries equation u t + α uu x + u xxx = 0 α IR Key idea: Replace the nonlinear PDE with a compatible linear system (Lax pair): ( ) ψ xx + 1 6 αu λ ψ = 0 ψ t + 4ψ xxx + αuψ x + 1 2 αu xψ = 0 ψ is eigenfunction; λ is constant eigenvalue (λ t = 0) (isospectral)

Lax Pairs in Matrix Form (AKNS Scheme) Express compatibility of where Ψ = ψ ψ x D x Ψ = X Ψ D t Ψ = T Ψ Lax equation (zero-curvature equation): D t X D x T + [X, T] = 0 with commutator [X, T] = XT TX and where = means evaluated on the PDE

Example: Lax pair for the KdV equation 0 1 X = λ 1 6 αu 0 1 T = 6 αu x 4λ 1 3 αu 4λ 2 + 1 3 αλu + 1 18 α2 u 2 + 1 6 αu 2x 1 6 αu x Substitution into the Lax equation yields D t X D x T + [X, T] = 1 6 α 0 0 u t + αuu x + u 3x 0

Equivalence under Gauge Transformations Lax pairs are equivalent under a gauge transformation: If (X, T) is a Lax pair then so is (X, T) with X = GXG 1 + D x (G)G 1 T = GTG 1 + D t (G)G 1 G is arbitrary invertible matrix and Φ = GΨ where Φ goes with (X, T), i.e., D x Φ = X Φ and D t Φ = T Φ. Thus, D t X D x T + [X, T] = 0

Example: For the KdV equation 0 1 X = λ 1 6 αu 0 and X = ik 1 6 αu 1 ik Here, X = GXG 1 and T = GTG 1 with where λ = k 2 G = i k 1 1 0

Reasons to Compute a Lax Pair Compatible linear system is the starting point for application of the IST and the Riemann-Hilbert method for boundary value problems Confirm the complete integrability of the PDE Zero-curvature representation of the PDE Compute conservation laws of the PDE Discover families of completely integrable PDEs Question: How to find a Lax pair of a completely integrable PDE? Answer: There is no completely systematic method

Lax Pair of Nonlinear P Es Replace the nonlinear P E by ψ 1 = L ψ (recall ψ 1 = ψ n+1,m ) ψ 2 = M ψ (recall ψ 2 = ψ n,m+1 ) For scalar P Es, L, M are 2 2 matrices; x 3 = f F and ψ = F f For systems of P Es, L, M are N N matrices; x 3 = f F, y 3 = g F, z 3 = h, etc., ψ =[F f g h F...]T where T is transpose.

Express compatibility: ψ 12 = L 2 ψ 2 = L 2 M ψ ψ 12 = M 1 ψ 1 = M 1 L ψ L ψ 2 2 ψ12 M 1 M ψ L ψ 1 Lax equation: L 2 M M 1 L = 0

Equivalence under Gauge Transformations Lax pairs of the same size are equivalent under a gauge transformation If (L, M) is a Lax pair then so is (L, M) with L = G 1 L G 1 M = G 2 M G 1 where G is an invertible matrix, φ = Gψ goes with (L, M) i.e., φ 1 = L φ, φ 2 = M φ. Proof: Trivial verification that (L 2 M M 1 L) φ = 0 (L 2 M M 1 L) ψ = 0

Examples of Lax Pairs of P Es Example 1: Discrete pkdv Equation (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 Lax pair: x 3 = f, ψ = [F f]t F L = tl c = t 1 x 1 x p 2 k 2 xx 1 M = sm c = s 1 x 2 x q 2 k 2 xx 2 with t = s = 1 or t = 1 DetLc = 1 k 2 p 2 and s = 1 DetMc = 1. Here, t 2 k 2 q 2 t s s 1 = 1.

Example 2: Schwarzian-Boussinesq System y x 1 z 1 + z = 0 y x 2 z 2 + z = 0 x y 12 (y 1 y 2 ) y (p x 1 y 2 q x 2 y 1 ) = 0 Lax pair: ψ = [F g h] T L = tl c = t y 1 1 0 kzy 1 x pyx 1 ky 1 x x 0 z 1 y 1

M = sm c = s y 2 1 0 kzy 2 x qyx 2 ky 2 x x 0 z 2 y 2 with t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = 3 x y1 2 y x and s = 3 1 x y 2 2 y x 2. Here, t 2 t s s 1 = y 1 y 2.

Lax Pair Algorithm for Scalar P Es (Nijhoff 2001, Bobenko and Suris 2001) Applies to P Es that are consistent around the cube Example: Discrete pkdv Equation Step 1: Verify the consistency around the cube Use the equation on floor (x x 13 )(x 1 x 3 ) p 2 + k 2 = 0 to compute x 13 = x p2 k 2 x 1 x 3 = x 3x xx 1 +p 2 k 2 x 3 x 1 Use the equation on left face (x x 23 )(x 3 x 2 ) k 2 + q 2 = 0 to compute x 23 = x q2 k 2 x 2 x 3 = x 3x xx 2 +q 2 k 2 x 3 x 2

x 23 x 123 x 2 x 12 q x 3 x 13 k x p x 1

Step 2: Homogenization Numerator and denominator of x 13 = x 3x xx 1 +p 2 k 2 x 3 x 1 and x 23 = x 3x xx 2 +q 2 k 2 x 3 x 2 are linear in x 3. Substitute x 3 = f F x 13 = xf+(p2 k 2 xx 1 )F f x 1 F into x 13 to get On the other hand, x 3 = f F x 13 = f 1 F 1. Thus, x 13 = f 1 F 1 = xf+(p2 k 2 xx 1 )F f x 1 F. Hence, F 1 = t (f x 1 F ) and f 1 = t ( xf + (p 2 k 2 xx 1 )F )

In matrix form F 1 f 1 = t 1 x 1 x p 2 k 2 xx 1 Matches ψ 1 = L ψ with ψ = F f F f Similarly, from x 23 = f 2 F 2 = xf+(q2 k 2 xx 2 )F f x 2 F ψ 2 = F 2 f 2 = s 1 x 2 F = M ψ. x q 2 k 2 xx 2 f

Therefore, L = t L c = t 1 x 1 x p 2 k 2 xx 1 M = s M c = s 1 x 2 x q 2 k 2 xx 2

Step 3: Determine t and s Substitute L = t L c, M = s M c into L 2 M M 1 L = 0 t 2 s (L c ) 2 M c s 1 t (M c ) 1 L c = 0 Solve the equation from the (2-1)-element for t 2t s s 1 = f(x, x 1, x 2, p, q,... ) Find rational t and s. Apply determinant to get t 2 s det L c = t s 1 det (L c ) 2 det (M c ) 1 det M c Solution: t = 1 det Lc, s = 1 det Mc Always works but introduces roots!

The ratio t 2 t s s 1 is invariant under the change t a 1 a t, s a 2 a s, where a(x) is arbitrary. Proper choice of a(x) = Rational t and s. No roots needed!

Algorithmic Computation of Lax Pairs for Systems of P Es Example 2: Schwarzian-Boussinesq System y x 1 z 1 + z = 0 y x 2 z 2 + z = 0 x y 12 (y 1 y 2 ) y (p x 1 y 2 q x 2 y 1 ) = 0 System has two single-edge equations and one full-face equation

Edge equations require augmentation of system with additional shifted, edge equations y 2 x 12 z 12 + z 2 = 0 y 1 x 12 z 12 + z 1 = 0 Edge equations will provide additional constraints during homogenization (Step 2). The way you handle edge equations leads to gauge-equivalent Lax pairs!

Step 1: Verify the consistency around the cube System on the front face: y x 1 z 1 + z = 0 y x 2 z 2 + z = 0 x y 12 (y 1 y 2 ) y (px 1 y 2 qx 2 y 1 ) = 0 Solve for x 12, y 12, and z 12 : x 12 = z 2 z 1 y 1 y 2 y 2 x 12 z 12 + z 2 = 0 y 1 x 12 z 12 + z 1 = 0 y 12 = y(px 1y 2 qx 2 y 1 ) x(y 1 y 2 ) z 12 = y 1z 2 y 2 z 1 y 1 y 2

Compute x 123, y 123, and z 123 : x 123 = z 23 z 13 y 13 y 23 y 123 = y 3(px 13 y 23 qx 23 y 13 ) x 3 (y 13 y 23 ) z 123 = y 13z 23 y 23 z 13 y 13 y 23

System on the bottom face: y x 1 z 1 + z = 0 y x 3 z 3 + z = 0 x y 13 (y 1 y 3 ) y (px 1 y 3 kx 3 y 1 ) = 0 Solve for x 13, y 13, and z 13 : x 13 = z 3 z 1 y 1 y 3 y 3 x 13 z 13 + z 3 = 0 y 1 x 13 z 13 + z 1 = 0 y 13 = y(px 1y 3 kx 3 y 1 ) x(y 1 y 3 ) z 13 = y 1z 3 y 3 z 1 y 1 y 3

Compute x 123, y 123, and z 123 : x 123 = z 23 z 12 y 12 y 23 y 123 = y 2(px 12 y 23 kx 23 y 12 ) x 2 (y 12 y 23 ) z 123 = y 12z 23 y 23 z 12 y 12 y 23

System on the left face: y x 3 z 3 + z = 0 y x 2 z 2 + z = 0 x y 23 (y 3 y 2 ) y (px 3 y 2 qx 2 y 3 ) = 0 Solve for x 23, y 23, and z 23 : x 23 = z 3 z 2 y 2 y 3 y 2 x 23 z 23 + z 2 = 0 y 1 x 23 z 23 + z 1 = 0 y 23 = y(qx 2y 3 kx 3 y 2 ) x(y 2 y 3 ) z 23 = y 2z 3 y 3 z 2 y 2 y 3

Compute x 123, y 123, and z 123 : x 123 = z 13 z 12 y 12 y 13 y 123 = y 1(qx 12 y 13 kx 13 y 12 ) x 1 (y 12 y 13 ) z 123 = y 12z 13 y 13 z 12 y 12 y 13 Substitute x 12, y 12, y 12, x 13, y 13, z 13, x 23, y 23, z 23 into the above to get

x 123 = x(x 1 x 2 ) ( y 1 (z 2 z 3 ) + y 2 (z 3 z 1 )+ y 3 (z 1 z 2 ) ) (z 1 z 2 ) ( px 1 (y 3 y 2 ) + qx 2 (y 1 y 3 ) + kx 3 (y 2 y 1 ) ) y 123 = q(z 2 z 1 )(kx 3 y 1 px 1 y 3 )+ k(z 3 z 1 )(px 1 y 2 qx 2 y 1 ) x 1 ( px1 (y 3 y 2 )+ qx 2 (y 1 y 3 )+ kx 3 (y 2 y 1 ) ) z 123 = px 1(y 3 z 2 y 2 z 3 )+ qx 2 (y 1 z 3 y 3 z 1 )+ kx 3 (y 2 z 1 y 1 z 2 ) px 1 (y 3 y 2 )+ qx 2 (y 1 y 3 )+ kx 3 (y 2 y 1 ) Answer is unique and independent of x and y. Consistency around the cube is satisfied!

Step 2: Homogenization Observed that x 3, y 3 and z 3 appear linearly in numerators and denominators of x 13 = z 3 z 1 y 1 y 3 y 13 = y(px 1y 3 kx 3 y 1 ) x(y 1 y 3 ) z 13 = y 1z 3 y 3 z 1 y 1 y 3

Substitute x 3 = f F, y 3 = g G, and z 3 = h H. Use constraints (from left face edges) y x 1 z 1 + z = 0, y x 2 z 2 + z = 0 y x 3 z 3 + z = 0 Solve for x 3 = z 3 z y Thus, x 3 = f F = h zh yh, y 3 = g G, and z 3 = h H

Substitute x 3, y 3, z 3 into x 13, y 13, z 13 : x 13 = G(h z 1H) H(y 1 G g) y 13 = y(px 1gF ky 1 fg) F x(y 1 G g) z 13 = y 1hG z 1 gh H(y 1 G g) Require that numerators and denominators are linear in f, g, h, F, G, and H. That forces H = G = F. Hence, x 3 = h zf yf, y 3 = g F, and z 3 = h F.

Compute x 3 = h zf yf y 3 = g F y 13 = g 1 F 1 z 3 = h F z 13 = h 1 F 1 x 13 = h 1 z 1 F 1 y 1 F 1 Hence, x 13 = h z 1F y 1 F g = h 1 z 1 F 1 y 1 F 1 y 13 = ypx 1g ky 1 h + kzy 1 F x(y 1 F g) z 13 = y 1h z 1 g y 1 F g = h 1 F 1 = g 1 F 1

Note that x 13 = h z 1F y 1 F g = h 1 z 1 F 1 y 1 F 1 is automatically satisfied as a result of the relation x 3 = z 3 z y. Write in matrix form: F 1 y 1 1 0 ψ 1 = g 1 = t kzy 1 x 0 z 1 y 1 h 1 pyx 1 ky 1 x x F g = L ψ h Repeat the same steps for x 23, y 23, z 23 to obtain

ψ 2 = F 2 g 2 h 2 = s y 2 1 0 kzy 2 x qyx 2 ky 2 x x 0 z 2 y 2 F g = M ψ h Therefore, L = tl core = t M = sm core = s y 1 1 0 kzy 1 x pyx 1 ky 1 x x 0 z 1 y 1 y 2 1 0 kzy 2 x qyx 2 ky 2 x x 0 z 2 y 2

Step 3: Determine t and s Substitute L = t L core, M = s M core into L 2 M M 1 L = 0 t 2 s (L core ) 2 M core s 1 t (M core ) 1 L core = 0 Solve the equation from the (2-1)-element: t 2t s s 1 = y 1 y 2. Thus, t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or (from determinant method) t = 3 s = 3 x y 2 2 y x 2. x y 2 1 y x 1 and

Summary: Lax Pair for Schwarzian-BSQ System Option a: Solving the edge equation for x 3 = z 3 z y yields F x 3 = h zf yf, y 3 = g F, and z 3 = h F, ψ a = Corresponding Lax matrix: L a = 1 y 1 1 0 kzy 1 y x 0 z 1 y 1 pyx 1 ky 1 x x g h

Option b: Solving the edge equation for z 3 = x 3 y + z yields F x 3 = f F, y 3 = g F, and z zf +yf 3 =, ψ F b = f g Corresponding Lax matrix: L b = 1 y 1 0 1 z z y 1 y 0 0 kyy 1 pyz 1 x 1 x

Gauge Equivalences between these Lax Matrices L b =G 1 L a G 1, with ψ b =Gψ a 1 0 0 G = z 0 1 y y 0 1 0

Software Demonstration

Conclusions and Future Work Mathematica code works for scalar P Es in 2D defined on quad-graphs (quadrilateral faces). Mathematica code has been extended to systems of P Es in 2D defined on quad-graphs. Code can be used to test (i) consistency around the cube and compute or test (ii) Lax pairs. Consistency around cube = P E has Lax pair. P E has Lax pair consistency around cube. Indeed, there are P Es with a Lax pair that are not consistent around the cube. Example: discrete sine-gordon equation.

Avoid the determinant method to avoid square roots! Factorization plays an essential role! Future Work: Extension to more complicated systems of P Es.

Thank You

Additional Examples Example: Discrete pkdv Equation Lax pair: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 L = tl core = t M = sm core = s x p2 k 2 xx 1 1 x 1 x q2 k 2 xx 2 1 x 2 with t = s = 1 or t = 1 DetLcore = 1 k 2 p 2 and s = 1 DetMcore = 1. k 2 q 2 Here, x 3 = f F, ψ = [f F ]T, and t 2 t s s 1 = 1.

Example: (H1) Equation (ABS classification) (x x 12 )(x 1 x 2 ) + q p = 0 Lax pair: L = t x p k xx 1 1 x 1 M = s x q k xx 2 1 x 2 with t = s = 1 or t = 1 k p and s = 1 k q Here, x 3 = f F, ψ = f F, and t 2 t s s 1 = 1.

Example: (H2) Equation (ABS 2003) (x x 12 )(x 1 x 2 )+(q p)(x+x 1 +x 2 +x 12 )+q 2 p 2 =0 Lax pair: L = t p k + x p2 k 2 + (p k)(x + x 1 ) xx 1 1 (p k + x 1 ) M = s with t = q k + x q2 k 2 + (q k)(x + x 2 ) xx 2 1 (q k + x 2 ) 1 and s = 1 2(k p)(p+x+x1 ) 2(k q)(q+x+x2 ) Here, x 3 = f F, ψ = f F, and t 2 t s s 1 = p+x+x 1 q+x+x 2.

Example: (H3) Equation (ABS 2003) p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) + δ(p 2 q 2 ) = 0 Lax pair: L = t kx ( δ(p 2 k 2 ) ) + pxx 1 p kx 1 M = s kx ( δ(q 2 k 2 ) ) + qxx 2 q kx 2 with t = 1 and s = 1 (p 2 k 2 )(δp+xx 1 ) (q 2 k 2 )(δq+xx 2 ) Here, x 3 = f F, ψ = f F, and t 2 t s s 1 = δp+xx 1 δq+xx 2.

Example: (H3) Equation (δ = 0) (ABS 2003) p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) = 0 Lax pair: L = t kx pxx 1 p kx 1 M = s kx qxx 2 q kx 2 with t = s = 1 x or t = 1 x 1 and s = 1 x 2 Here, x 3 = f F, ψ = f F, and t 2 t s s 1 = x x 1 x x 2 = x 1 x 2.

Example: (A1) Equation (ABS 2003) p(x+x 2 )(x 1 +x 12 ) q(x+x 1 )(x 2 +x 12 ) δ 2 pq(p q) = 0 (Q1) if x 1 x 1 and x 2 x 2 Lax pair: L = t (k p)x 1 + kx p ( δ 2 ) k(k p) + xx 1 p ( ) (k p)x + kx 1 M = s (k q)x 2 + kx q ( δ 2 ) k(k q) + xx 2 q ( ) (k q)x + kx 2

with t = 1 k(k p)((δp+x+x 1 )(δp x x 1 )) and s = 1 k(k q)((δq+x+x 2 )(δq x x 2 )) Here x 3 = f F, ψ = f F, and t 2t s s 1 = q (δp+(x+x 1 ))(δp (x+x 1 )) p(δq+(x+x 2 ))(δq (x+x 2 )). Question: Rational choice for t and s?

Example: (A2) Equation (ABS 2003) (q 2 p 2 )(xx 1 x 2 x 12 + 1) + q(p 2 1)(xx 2 + x 1 x 12 ) p(q 2 1)(xx 1 + x 2 x 12 ) = 0 (Q3) with δ = 0 via Möbius transformation: x x, x 1 1 x 1, x 2 1 x 2, x 12 x 12, p p, q q Lax pair: k(p L=t 2 1)x ( p 2 k 2 +p(k 2 ) 1)xx 1 p(k 2 1)+(p 2 k 2 )xx 1 k(p 2 1)x 1 k(q M =s 2 1)x ( q 2 k 2 +q(k 2 ) 1)xx 2 q(k 2 1)+(q 2 k 2 )xx 2 k(q 2 1)x 2

with t = and s = 1 (k 2 1)(k 2 p 2 )(p xx 1 )(pxx 1 1) 1 (k 2 1)(k 2 q 2 )(q xx 2 )(qxx 2 1) Here, x 3 = f F, ψ = f F, and t 2t s s 1 = (q2 1)(p xx 1 )(pxx 1 1) (p 2 1)(q xx 2 )(qxx 2 1). Question: Rational choice for t and s?

Example: (Q1) Equation (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+δ 2 pq(p q) = 0 Lax pair: L = t (p k)x 1 + kx p ( δ 2 ) k(p k) + xx 1 p ( ) (p k)x + kx 1 M = s (q k)x 2 + kx q ( δ 2 ) k(q k) + xx 2 q ( ) (q k)x + kx 2 1 with t = δp±(x x 1 ) and s = 1 δq±(x x 2 ), 1 or t = k(p k)((δp+x x 1 )(δp x+x 1 )) and s = 1 k(q k)((δq+x x 2 )(δq x+x 2 ))

Here, x 3 = f F, ψ = f F, and t 2t s s 1 = q (δp+(x x 1 ))(δp (x x 1 )) p(δq+(x x 2 ))(δq (x x 2 )).

Example: (Q1) Equation (δ = 0) (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 ) = 0 which is the cross-ratio equation (x x 1 )(x 12 x 2 ) (x 1 x 12 )(x 2 x) = p q Lax pair: L = t (p k)x 1 + kx pxx 1 p ( ) (p k)x + kx 1 M = s (q k)x 2 + kx qxx 2 q ( ) (q k)x + kx 2

t = 1 x x 1 and s = 1 x x 2 or t = 1 and s = 1. k(k p)(x x1 ) k(k q)(x x2 ) Here, x 3 = f F, ψ = f, and t 2 t F s s 1 = q(x x 1) 2 p(x x 2 ) 2.

Example: (Q2) Equation (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+pq(p q) (x+x 1 +x 2 +x 12 ) pq(p q)(p 2 pq+q 2 )=0 Lax pair: (k p)(kp x 1 )+kx L=t p ( k(k p)(k 2 kp+p 2 ) x x 1 )+xx 1 p ( ) (k p)(kp x)+kx 1 (k q)(kq x 2 )+kx M =s q ( k(k q)(k 2 kq+q 2 ) x x 2 )+xx 2 q ( ) (k q)(kq x)+kx 2

with t = and s = 1 k(k p)((x x 1 ) 2 2p 2 (x+x 1 )+p 4 ) 1 k(k q)((x x 2 ) 2 2q 2 (x+x 2 )+q 4 ) Here, x 3 = f F, ψ = [f F ]T, and t 2 s = q ( (x x1 ) 2 2p 2 (x + x 1 ) + p 4) t s 1 p ( (x x 2 ) 2 2q 2 (x + x 2 ) + q 4) = p ( (X + X 1 ) 2 p 2) ( (X X 1 ) 2 p 2) q ( (X + X 2 ) 2 q 2) ( (X X 2 ) 2 q 2) with x = X 2, and, consequently, x 1 = X 2 1, x 2 = X 2 2.

Example: (Q3) Equation (ABS 2003) (q 2 p 2 )(xx 12 +x 1 x 2 )+q(p 2 1)(xx 1 +x 2 x 12 ) p(q 2 1)(xx 2 +x 1 x 12 ) δ2 4pq (p2 q 2 )(p 2 1)(q 2 1)=0 Lax pair: 4kp ( p(k 2 1)x+(p 2 k 2 ) )x 1 L=t (p 2 1)(δ 2 k 2 δ 2 k 4 δ 2 p 2 +δ 2 k 2 p 2 4k 2 pxx 1 ) 4k 2 p(p 2 1) 4kp ( p(k 2 1)x 1 +(p 2 k 2 )x ) 4kq ( q(k 2 1)x+(q 2 k 2 ) )x 2 M=s (q 2 1)(δ 2 k 2 δ 2 k 4 δ 2 q 2 +δ 2 k 2 q 2 4k 2 qxx 2 ) 4k 2 q(q 2 1) 4kq ( q(k 2 1)x 2 +(q 2 k 2 )x )

with t= 1 2k p(k 2 1)(k 2 p 2 )(4p 2 (x 2 +x 2 1 ) 4p(1+p2 )xx 1 +δ 2 (1 p 2 ) 2 ) and s= 2k 1 q(k 2 1)(k 2 q 2 )(4q 2 (x 2 +x 2 2 ) 4q(1+q2 )xx 2 +δ 2 (1 q 2 ) 2 ).

Here, x 3 = f F, ψ = f F, and t 2 t s s 1 = q(q2 1) ( 4p 2 (x 2 +x 2 1 ) 4p(1+p2 )xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x 2 +x 2 2 ) 4q(1+q2 )xx 2 +δ 2 (1 q 2 ) 2) = q(q2 1) ( 4p 2 (x x 1 ) 2 4p(p 1) 2 xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x x 2 ) 2 4q(q 1) 2 xx 2 +δ 2 (1 q 2 ) 2) = q(q2 1) ( 4p 2 (x+x 1 ) 2 4p(p+1) 2 xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x+x 2 ) 2 4q(q+1) 2 xx 2 +δ 2 (1 q 2 ) 2)

where 4p 2 (x 2 +x 2 1) 4p(1+p 2 )xx 1 +δ 2 (1 p 2 ) 2 = δ 2 (p e X+X 1 )(p e (X+X1) )(p e X X 1 )(p e (X X1) ) = δ 2 (p cosh(x + X 1 )+sinh(x + X 1 )) (p cosh(x + X 1 ) sinh(x + X 1 )) (p cosh(x X 1 )+sinh(x X 1 )) (p cosh(x X 1 ) sinh(x X 1 )) with x = δ cosh(x), and, consequently, x 1 = δ cosh(x 1 ), x 2 = δ cosh(x 2 ).

Example: (Q3) Equation (δ = 0) (ABS 2003) (q 2 p 2 )(xx 12 + x 1 x 2 ) + q(p 2 1)(xx 1 + x 2 x 12 ) p(q 2 1)(xx 2 + x 1 x 12 ) = 0 Lax pair: L=t (p2 k 2 )x 1 +p(k 2 1)x k(p 2 1)xx 1 (p 2 1)k ( (p 2 k 2 )x+p(k 2 ) 1)x 1 M =s (q2 k 2 )x 2 +q(k 2 1)x k(q 2 1)xx 2 (q 2 1)k ( (q 2 k 2 )x+q(k 2 ) 1)x 2

with t = 1 px x 1 and s = 1 qx x 2 or t = 1 px 1 x and s = 1 qx 2 x or t = 1 (k 2 1)(p 2 k 2 )(px x 1 )(px 1 x) and s = 1. (k 2 1)(q 2 k 2 )(qx x 2 )(qx 2 x) Here, x 3 = f F, ψ = f F, and t 2t s s 1 = (q2 1)(px x 1 )(px 1 x) (p 2 1)(qx x 2 )(qx 2 x).

Example: (α, β)-equation (Quispel 1983) ( (p α)x (p+β)x1 ) ( (p β)x2 (p+α)x 12 ) ( (q α)x (q+β)x 2 ) ( (q β)x1 (q+α)x 12 ) =0 Lax pair: L=t (p α)(p β)x+(k2 p 2 )x 1 (k α)(k β)xx 1 (k+α)(k+β) ( (p+α)(p+β)x 1 +(k 2 p 2 )x ) M =s (q α)(q β)x+(k2 q 2 )x 2 (k α)(k β)xx 2 (k+α)(k+β) ( (q+α)(q+β)x 2 +(k 2 q 2 )x )

with t = 1 (α p)x+(β+p)x 1 ) and s = 1 (α q)x+(β+q)x 2 ) or t = or t = 1 (β p)x+(α+p)x 1 ) and s = 1 (β q)x+(α+q)x 2 ) 1 (p 2 k 2 )((β p)x+(α+p)x 1)((α p)x+(β+p)x 1) and s = 1 (q 2 k 2 )((β q)x+(α+q)x 2)((α q)x+(β+q)x 2) Here, x 3 = f F, ψ = f F, and t 2t s s 1 = ( (β p)x+(α+p)x 1)((α p)x+(β+p)x 1) ((β q)x+(α+q)x 2)((α q)x+(β+q)x 2).

Example: Discrete sine-gordon Equation xx 1 x 2 x 12 pq(xx 12 x 1 x 2 ) 1 = 0 (H3) with δ = 0 via extended Möbius transformation: x x, x 1 x 1, x 2 1 x 2, x 12 1 x 12, p 1 p, q q Discrete sine-gordon equation is NOT consistent around the cube, but has a Lax pair! Lax pair: L = p kx 1 M = k x px 1 x qx 2 x 1 kx x 2 k q

Example: Lattice due to Hietarinta (2011) z x 1 y 1 x = 0 z x 2 y 2 x = 0 z 12 y x 1 ( px1 qx ) 2 = 0 x z 1 z 2 System has two single-edge equations and one full-face equation. Lax pair: L = t yz x k x kx px 1 z yzz 1 x x 1 z z 1 xz 1 z 0 zz 1

and M = s yz x k x kx qx 2 z yzz 2 x x 2 z z 2 xz 2, z 0 zz 2 where t = s = 1 z, or t = 1 z 1, s = 1 z 2, or t = 3 x x 1 z 2 z 1, s = 3 x x 2 z 2 z 2. Here, x 3 = h G, y 3 = g G, z 3 = f G, ψ = t 2t s s 1 = z 1 z 2. f g, and G

Example: Discrete Boussinesq System (Tongas and Nijhoff 2005) z 1 x x 1 + y = 0 z 2 x x 2 + y = 0 (x 2 x 1 )(z x x 12 + y 12 ) p + q = 0 Lax pair: L = t x 1 1 0 y 1 0 1 p k xy 1 + x 1 z z x

x 2 1 0 M = s y 2 0 1 q k xy 2 + x 2 z z x with t = s = 1, or t = 1 3 p k and s = 1 Here, x 3 = f F, y 3 = g F, ψ = 3 q k. f F, and t 2 t g s s 1 = 1.

Example: System of pkdv Lattices (Xenitidis and Mikhailov 2009) (x x 12 )(y 1 y 2 ) p 2 + q 2 = 0 (y y 12 )(x 1 x 2 ) p 2 + q 2 = 0 Lax pair: 0 0 tx t(p 2 k 2 xy 1 ) 0 0 t ty L = 1 T y T (p 2 k 2 x 1 y) 0 0 T T x 1 0 0

M = 0 0 sx s(q 2 k 2 xy 2 ) 0 0 s sy 2 Sy S(q 2 k 2 x 2 y) 0 0 S Sx 2 0 0 with t = s = T = S = 1, or t T = 1 DetLc = 1 p k and s S = 1 DetMc = 1 q k. Here, x 3 = f F, y 3 = g G, ψ = [f F g G]T, and t 2 S T s 1 = 1 and T 2 s t S 1 = 1, or T 2 T S S 1 = 1, with T = t T, S = s S.

Example: Discrete NLS System (Xenitidis and Mikhailov 2009) y 1 y 2 y ( (x 1 x 2 )y + p q ) = 0 ( x 1 x 2 + x 12 (x1 x 2 )y + p q ) = 0 Lax pair: L = t 1 x 1 y k p yx 1 M = s 1 x 2 y k q yx 2

with t = s = 1, or t= 1 DetLc = 1 α k and s= 1 β k. Here, x 3 = f F, ψ = f F, and t 2 t s s 1 = 1.

Example: Schwarzian-Boussinesq Lattice (Nijhoff 1999) y z 1 x 1 + x = 0 y z 2 x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Lax pair: L = t y 0 yz 1 pyz 1 0 z z 0 1 y 1 kyy 1

M = s y 0 yz 2 pyz 2 0 z z 0 1 y 2 kyy 2 with t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = z 3 y 2 y 1 z 1 and s = z 3 y 2 y 2 z 2. Here, x 3 = fy+f x F, y 3 = g F, z 3 = f F, ψ = f g F, and t 2 t s s 1 = y 1 y 2.

Example: Toda modified Boussinesq System (Nijhoff 1992) y 12 (p q + x 2 x 1 ) (p 1)y 2 + (q 1)y 1 = 0 y 1 y 2 (p q z 2 + z 1 ) (p 1)yy 2 + (q 1)yy 1 = 0 y(p + q z x 12 )(p q + x 2 x 1 ) (p 2 + p + 1)y 1 + (q 2 + q + 1)y 2 = 0 Lax pair: 1+k+k k + p z 2 y L=t 0 p 1 (1 k)y 1 1 0 p k x 1 k 2 y y 1 p 2 (y 1 y) ky(x 1 z)+yzx 1 y p(y 1+yx 1 +yz) y

1+k+k k + q z 2 y M =s 0 q 1 (1 k)y 2 1 0 q k x 2 k 2 y y 2 q 2 (y 2 y) ky(x 2 z)+yzx 2 y q(y 2+yx 2 +yz) y with t = s = 1, or t = 3 y1 y and s = 3 y2 f Here, x 3 = f F, y 3 = g F, ψ = g, F y. and t 2 t s s 1 = 1.