x k 34 k 34. x 3

Similar documents
x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

Notes on Eigenvalues, Singular Values and QR

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u

Spectrum and Pseudospectrum of a Tensor

Linear Algebra and Matrix Inversion

Math 6610 : Analysis of Numerical Methods I. Chee Han Tan

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition

Eigenvalues and Eigenvectors

Matrix Analysis and Algorithms

Maths for Signals and Systems Linear Algebra in Engineering

Basic Elements of Linear Algebra

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as

Linear Algebra Review

Introduction and preliminaries

9. Banach algebras and C -algebras

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Numerical Methods for Solving Large Scale Eigenvalue Problems

Math 3108: Linear Algebra

18.06 Problem Set 10 - Solutions Due Thursday, 29 November 2007 at 4 pm in

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition

5 Selected Topics in Numerical Linear Algebra

Ayuntamiento de Madrid

Positive Definite Matrix

Krylov subspace projection methods

Linear Algebra. Session 12

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Linear Algebra Primer

The QR Factorization

Singular Value Decomposition

) k ( 1 λ ) n k. ) n n e. k!(n k)! n

Math113: Linear Algebra. Beifang Chen

Math 489AB Exercises for Chapter 2 Fall Section 2.3

Steven J. Leon University of Massachusetts, Dartmouth

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Solutions for Chapter 3

Matrix Theory. A.Holst, V.Ufnarovski

3 Applications of partial differentiation

Rational constants of monomial derivations

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

CPSC 313 Introduction to Computability

Orthogonalization and least squares methods

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg

The Singular Value Decomposition and Least Squares Problems

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a)

MTH5102 Spring 2017 HW Assignment 1: Prob. Set; Sec. 1.2, #7, 8, 12, 13, 20, 21 The due date for this assignment is 1/18/17.

MATH 532: Linear Algebra

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

vibrations, light transmission, tuning guitar, design buildings and bridges, washing machine, Partial differential problems, water flow,...

Chapter 4 Euclid Space

Economics 204 Summer/Fall 2010 Lecture 10 Friday August 6, 2010


Methods of Mathematical Physics X1 Homework 2 - Solutions

Engg. Math. I. Unit-I. Differential Calculus

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix:

MATH 431: FIRST MIDTERM. Thursday, October 3, 2013.

Examples: Solving nth Order Equations

GMRES: Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems

Further Mathematical Methods (Linear Algebra)

Problems of Eigenvalues/Eigenvectors

Computational Methods. Eigenvalues and Singular Values

Chapter 2 Vector-matrix Differential Equation and Numerical Inversion of Laplace Transform

Linear algebra for computational statistics

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

The Corrected Trial Solution in the Method of Undetermined Coefficients

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook.

forms Christopher Engström November 14, 2014 MAA704: Matrix factorization and canonical forms Matrix properties Matrix factorization Canonical forms

Eigenvalue Problems and Singular Value Decomposition

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Linear Algebra. Week 7

1 Arithmetic calculations (calculator is not allowed)

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1...

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

STAT200C: Review of Linear Algebra

International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994

Matrix Differentiation

Ordinary Differential Equations (ODEs)

Algebra Workshops 10 and 11

CALCULUS JIA-MING (FRANK) LIOU

Non-Solvable Ordinary Differential Equations With Applications

Linear Least Squares. Using SVD Decomposition.

For more information visit

ELEMENTARY LINEAR ALGEBRA

2. Matrix Algebra and Random Vectors

Spectral radius, symmetric and positive matrices

Integration by Parts

STA141C: Big Data & High Performance Statistical Computing

Characteristic Polynomial

Section Let A =. Then A has characteristic equation λ. 2 4λ + 3 = 0 or (λ 3)(λ 1) = 0. Hence the eigenvalues of A are λ 1 = 3 and λ 2 = 1.

Vector Space and Linear Transform

Ma/CS 6b Class 20: Spectral Graph Theory

4 Differential Equations

Some notes on Linear Algebra. Mark Schmidt September 10, 2009

Problems of Eigenvalues/Eigenvectors

The Laplace Transform. Background: Improper Integrals

UNIT 6: The singular value decomposition.

Solutions and Proofs: Optimizing Portfolios

Elementary operation matrices: row addition

Basic Calculus Review

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

Transcription:

A A A A A B A =, C =. f k k x k l f f 3 = k 3 k 3 x k 34 k 34 x 3 k 3 l 3 k 34 l 34. f 4 x 4 K K = [ ] 4 K = K (K) = (K)

I m m R I m m = [e, e,, e m ] R = [a, a,, a m ] R = (r ij ) r r r m R = r r m. r mm I m m = R R r r r m [e, e,, e m ] = [a, a,, a m ] r r m. r mm R R m i= r ii r ii R e = r a a = r e C m (k) {v = v v Cm : v i = i > k} v m C m () C m () C m (m) = C m C m (k) C m a C m () k i a k C m (k) I m m = RR e i+ = m a k r k(i+) = k= a i+ = r (i+)(i+) ( i a k r k(i+) + a i+ r (i+)(i+). k= e i+ ) m a k r k(i+) C m (i + ). k= a k C m (k) k m R d d d c c F d 8 f j (i) d C 8 c C 8 F c = d F C 8 F {} d c Ad = c c C 8 AF c = c c C 8 A = F A F ij = f j (i) c c 8 A A = A A

m m m x + x = (x i + x i ) = (x i + x i) + x i x i = x + x + x x = x + x, i= i= k i= x i = k i= x i k n n+ i= i= n x i = x i + x n+ = i= n n+ x i + x n+ = x i. n N Ax = λx x C \ {} λ x = λx x = x (λx) = x Ax = x A x = (Ax) x = (λx) x = λ x x = λ x. x λ = λ Ax = λx Ay = µy λ µ λy x = y (Ax) = (y A)x = (y A )x = (Ay) x = (µy) x = µy x, µ = µ λ µ y x = x y A λ A x x λ = i= i= x x = x (A A)x = (Ax) (Ax) = (λx) (λx) = λ x x. A (A + A ) (A A ) is (is) = i S = i( S) = is λ S λi is λ x (I S)x = x = Sx x x = (Sx) x = x S x = x Sx = x x. x x = x (I S) = {} I S

A = [(I S) (I + S)] [(I S) (I + S)] U (U ) = (U ) A = (I + S) (I S) (I S) (I + S) = (I + S )[(I S)(I S) ] (I + S) = (I S)[(I S)(I + S)] (I + S) = (I S)(I S ) (I + S). A = A(I S)(I S) = (I S)[(I S ) (I S )](I S) = (I S)(I S) = I Q u = u A x C \ {} Ax = x + uv x = x = u(v x) u x = αu α C Ax = αu + u(v (αu)) = αu( + v u) =. v u = v u = α \{} A(αu) = αu + uv (αu) = αu( + v u) = A A v u = (A) = {αu : α C} u A A A [x,, x m ] AA = (I + uv )[x,, x m ] = [x + uv x,, x m + uv x m ] = I = [e,, e m ]. x i +uv x i = e i ( i m) A [e θ u,, e m θ m u] = I uθ θ = θ θ m I = AA = (I + uv )(I uθ ) = I uθ + uv uv uθ, = uθ i +uv i u(v u)θ i ( i m) θ i θ i = v i +v u A = I uv +v u [ ] H k+ = Hk H k (H k ) = H k H k [ H k H k H k H k ]. H k α k α = [ ] [ Hk+ T H T = k Hk T Hk H ] = α k k = α k H k+. H T k H T k H k H k H k (k N) α k = k

x W = W x x W = W x = W x = x = W x + y W = W (x + y) = W x + W y W x + W y = x W + y W. αx W = W (αx) = α(w x) = α W x = α x W λ A x C m \ {} Ax = λx λ = Ax x Ay = A. y C m \{} y x i = i m x i x = x i m i= x i = x x = αe i (α C, i m) x i = i m x i x = m i= x i m i= x i = m x i = m x x = α (α C) x C n \ {} Ax Ax x = n Ax. n x x A n A x C n \ {} Ax x m Ax x. A m A A i i A A i i A B A

p u C m v C n E = uv x C n \ {} Ex x = uv x x = v x u x u v, E u v x = v E = u v E ij = u i v j m n m n m n E F = E ij = u i v j = ( u i )( v j ) = u F v F. i= j= i= j= i= j= x x ( x x ) x = x x = x = x + x = y (x + x ) ( y x + y x ) y x + y x = x + x. y = y = y = y = α C αx = y = y (αx) = y = α y x = α x x z C m z x = z x z = e iθ z / z θ = (z x) z = z x = e iθ z z x = z x z = x =. Bx = (yz )x = y(z x) = y B = Bw = yz w = z w y = w z = z =. w = w = w = w = z B = yz Bx = y B = B Bx = y B = z x = = x z = x X l X l(x) = x l = l(x) = l( m i= x ie i ) = [l(e ),, l(e m )] x z z = [l(e ),, l(e m )] l(w) = z w w C m z x = l(x) = x z = l = x m

A = σ Av σ w = v c + v s c s c + s = Aw < σ Aw < σ {σ j } {σj } AA A A {u j } AA σj σ j AA σj AA u j {v j } A A = UΣV A AA = U(ΣΣ )U (AA )U = U(ΣΣ ) U [u, u,, u m ] { (AA [σ )[u, u,, u m ] = u, σu,, σmu m ] m n [σu,, σnu n,,, ] m > n. p = {m, n} σ σ σ p AA u u u p U m n U σ σ σ m m > n n U σ σ σ n m n U AA U A p A V (A A)V = V (ΣΣ ) ΣΣ Σ Σ U = I Σ = U = [ ] Σ = [ ] [ ] 3 V = [ ] 3 V = U = I 3 3 Σ = V = U = I Σ = U = [ ] [ ] [ ] V = [ ] Σ = [ ] [ ] V = [ ] {u, w, v} = [{{, }, {, }}]

A = a a a n B = a m a m, a a m a m a mn a mn a m,n a n B A T A B A B On pre image plane 3 On image plane.8.6.4...4.6.8.5.5 3 3 3

A U Σ V B U Σ V A B Q A = QBQ A = Q(U Σ V )Q = (QU )Σ (QV ) (QU )Σ (QV ) A Σ = Σ A B [ ] [ ] A = B = A B A

C m R m A A A A v v v n V = [v,, v n ] λ i v i (i =,, n) A A λ λ λ n r λ r > λ r+ = = λ n = (A A) = (A) x (A A) A Ax = (Ax) (Ax) = x A Ax = Ax = x (A). σ i = λ i u i = Avi σ i i =,, r {u,, u r } u i u j = (Av i) (Av j ) σ i σ j = v i (A A)v j λi λ j = λ jvi v j = δ ij. λi λ j {u,, u r } R m {u,, u r, u r+,, u m } U = [u,, u m ] U AV (A A) = (A) u { U AV = u A[v,, v n ] = (u i Av j ), u j > r i Av j = σ i δ ij j r. u m U AV Σ A = UΣV A [ ] [ ] AA = = [ ] [ ] 5 4, (λi AA λ 5 4 ) = = λ 9λ + 4. 4 4 4 λ 4 AA λ, = 9± 65 ( 9+ A σ(a) = ) / ( 65.9896648889 σ 9 (A) = ) / 65.6847464898 A UΣV ε > A ε = U(Σ + εi m n )V I ij = δ ij Σ (Σ + εi m n ) A ε A A ε = U(εI m n )V = ε. ε A A ε = A ε C m n

U AA T = UΣΣU T [ ] [ ] AA T 5 75 5 3 = = 5 75 5 3 5 [ ] 5 3 3 5 ([ ]) 5 λ 3 = λ λ + 6 = (λ 8)(λ ). 3 5 λ AA T 8 5 = 5 = 5 A 5 [ ] [ ] 5 3 8 U = U 3 5 U a, b {, } V = A T UΣ = [ ] 5 U = [ a a [ a a ] b, b ] b b [ 5 ] [ 3 = U V a = b = 5 a 4 5 b 4 5 a 3 5 b A 5 [ ] [ ] [ ] [ ] 3/5 4/5 / ± ± ± 4/5 3/5 / / ± / R A ]. On pre image plane 5 On image plane.8.6.4 5.. 5.4.6.8.8.6.4...4.6.8 5 5 5 5 5 A = A F = + 5 = 5 A = 6 A = 5

A = UΣV T U V [ A = (UΣV T ) = V Σ U T 3 = 5 4 5 4 5 3 5 ] [ 5 ] [ ] = [ ] 5. A [ ] λ = λ 3λ +. 5 λ A λ, = (3 ± 39i)/ A = 5 ( ) = λ λ = 4 (9 + 39) = σ σ = 5 = (A) = [ ] A A = = [ ] [ ] [ ] V Σ U Im m UΣV UΣV = I m m V Σ U [ ] [ ] [ ] [ ] Im m U Σ V I m m V Σ U. [ ] Im m I m m [ ] [ ] U Im m V I m m [ ] A A [ ] V U = [ Im m I m m [ ] [ ] U U V V ] [ U V [ ] [ Im m U I m m V ] ] [ ] Im m. I m m ([ ] [ ]) ([ ] [ ]) ([ ] [ Im m U Σ Im m Im m U = I m m V Σ I m m I m m V ([ ] [ ]) [ ] ([ ] [ ]) Im m U Σ Im m U = I m m V Σ. I m m V Σ Σ = Σ [ ] [ ] [ ] [ ] [ ] [ ] Σ Im m I m m Im m I = m m Σ Im m I, m m Im m I m m = I Σ I m m I m m I m m I m m Σ I m m I m m I m m I m m. m m ])

[ ] Σ = Σ X = [ ] Im m I m m I m m I m m [ Σ Σ [ Im m I m m [ ] Σ Σ ] ] [ U V [ ] Σ X X Σ ] [ Im m [ ] Im m I m m I m m I m m I m m [ A A ] I m m I m m ], (I P ) = I P = I P (I P ) (I P ) = [(I P ) P ] = (I P ) (I P )P P (I P ) + P = I P + P = I, I P F = I E = 4 (I + F + F ) = I+F = E E F F = F = F E = E E E E = A A = UΣV A Σ A A = V Σ ΣV A A Σ A A A A A x A Ax = Ax = x A Ax = A A x Ax = A Ax = A A

A A a = / / a = P A P x = a xa + a xa = a a x + a a x = ( ) a / / (a, a ) a x = AA x x C 3 P = AA = / / P (,, 3) (,, ) P = B(B B) B = 5. 6 5 P (,, 3) (,, ) v (P ) P v = v P = x Cm \{} P x x UΣV x C m P = P x = x P P x = x V Σ U UΣV x = x V Σ V x. P x ΣV x Σx = x C m \{} x x C m \{} V = = Σ. x x C m \{} x P P = Σ = Σ = I P = UΣV UΣV = P = UΣV V UΣ = I Σ = I U = V P A A A = ( ) = = B = (b, b ) ( ) r r (b, b ) = (q, q ) r r = b = q = b / b = (/,, / ) T r = q b = (/,, / ) b r q = / / = =

r = 3 B / / 3 B = / ( ) 3 / /. 3 3 B / 6 q 3 = q q = / 6 /. 6 / / 3 / 6 B = / 3 / 6 / / 3 / 3. 6 ˆR r ij = i > j i j i j A A = A A = QR A A = Q R = m j= r jj r ij = qi a j(i j) r jj = a j j i= r ijq i j r jj = a j i= j r ij q i = (a j i= j r ij qi )(a j i= j r ij q i ) = a j i= j rij + i= r ij a j. A = m j= r jj m j= a j m = P P () P () P x () y () x () y () 3 (x (), y () ) q () 3 Q x () y () 3 (x (), y () ) q () 3 Q x () y () v P q () 3 q () 3 Q 3 (q () ) v 3 3, q() 3 A = (a, a,, a n ) ˆQ = (q, q,, q n ) r r r n ˆQ = r r n. r nn

A k k n a k a a k r kk = r kk = k k n k a k = r ik q i a,, a k. i= a k a a k A A n ˆR k a,, a k = q,, q k. A k A k ˆQ ˆR = (q, q, q 3 ) = (q,, q ) = A. (A) = > k = q v = a q = v v m m R m m q m + m = 3m m v v q 3m q q q j q j v j = P qj P q P q a j. P q a j = a j q q a j m (m ) q a j m q (q a j ) m a j q (q a j ) m+(m )+m+m = 4m (j ) v j (4m )(j ) q q j = vj v j 3m q j (4m )(j )+3m n j= [(4m )(j )+3m] = (4m ) n(n ) + 3mn k = a = k = a =

R j R j = = r jj r j(j+) r jj r jn r jj r jj r j(j+) r jn q i = v i /r ii v j = v j r ij q i

slope =.69779 logarithm of max error between the first 4 discrete and continuous Legendre polynomials 4 6 8 4 4 6 8 4 6 8 (base /) power of the grid spacing A A A m A N m m N (m ) N m = A = (I +N) = I N +(N) +( ) m (N) m m = 3 A =, A = 4. σ m A σ m = A. σ m A A e m = (( ) m, ( ) m,, ) A (( ) m, ( ) m,, ) = 4 m 3 σ m 3 4m. m = 3 σ.939.54 3 4m.8 m = 5 σ.47 3 4m

F I qq q λ x x qq x = λx ( λ)x = (q x)q q = {x : q x = } H λ x q x = µq µ ( λ)µ = µ λ = q = {µq : µ C R} x x xe H F = I F = I F = ± a a m F F m i= a i = F m i= a i = m a i p + = {a i : a i =, i m} p = {a i : a i =, i m} { p + + p = m p + p = m, p + = m p = F = m i= a i = F = H H H H (m ) F = F = F F

Q R..36.54.44.3534.56 9.8995 9.4954 9.6975 Q =.77.396.548.44.558.387, R = 3.99 3.9..97.44.558.4 Q R..36.54.684.3577.44.3534.56.38.58 9.8995 9.4954 9.6975 Q =.77.396.548.94.683.44.558.387.3656.498, R = 3.99 3.9..97.44.558.4.539.4695 Q R..36.54.44.3534.56 9.8995 9.4954 9.6975 Q =.77.396.548.44.558.387, R = 3.99 3.9..97.44.558.4 QR = (q,, q n ) Q R r r n ( x F = y) ( ( ) c s x = s c) y ( ) cx + sy. sx + cy

( x y) F ( x y ) [( ) x + F y ( x F y) ( x y )] [( x y ( c x + s y ) ( x y) s + c+ y ) F F ( ( ) ( ) x θ θ r α J = y) θ θ r α J θ ( )] x = [ (x, y) y ( ) x (x, y)f F y ( ) θ α + θ α = r = r θ α + θ α ( )] x =. y ( ) (α θ). (α θ) m = n ( ) m > n A ˆQ ˆR ˆQ = ˆR ˆQ ˆR n n ˆQ n n A = ˆQ ˆR A + = (A A) A = ( ˆR ˆQ ˆQ ˆR) ( ˆR ˆQ ) = ˆR ˆQ = A ˆQ ˆQ. A + A ˆQ ˆQ ˆQ ˆQ ˆQ ( ) m (m n) H ( ˆQ, H) H H H H n (m n) H (m n) (m n) b R m C m ( ) ( ) ˆQ ˆQ b ˆQ H ˆQ b ˆQ H ( ) = ˆQ b ( ˆQ b H b) ˆQ ˆQ A + A ) = ( ˆQ, H b = b. Q m m ( ) Q Q Q =, Q Q Q n n Q n (m n) Q (m n) n Q (m n) (m n) Q Q = Q Q z R n C n ( ) ( ) Q z Q Q z = z Q Q,

a a a 3 [ a e x + a x + a 3 Γ(x) x ] dx F (a, a, a 3 ) = [ a e x + a x + a 3 Γ(x) x ] dx a F (a, a, a 3 ) = a F (a, a, a 3 ) = a 3 F (a, a, a 3 ) = ex dx ex xdx Γ(x)ex dx ex xdx xdx Γ(x) xdx ex Γ(x)dx xγ(x)dx Γ (x)dx a a a 3 = x x Γ(x) x e x x dx dx. dx

A m > n n x

x x x 3 a a a a 3 a 4 a 5 a 6 a 7 a 8 a 9 a a x 4 x 5 x 6 a a a a 3 a 4 a 5 a 6 a 7 a 8 a 9 a a