Nuclear Reactions in Lattice EFT

Similar documents
Fate of the neutron-deuteron virtual state as an Efimov level

Ab initio alpha-alpha scattering using adiabatic projection method

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Recent results in lattice EFT for nuclei

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Carbon-12 in Nuclear Lattice EFT

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Ab initio nuclear structure from lattice effective field theory

Review of lattice EFT methods and connections to lattice QCD

Lattice Simulations with Chiral Nuclear Forces

PoS(CD15)117. Scattering cluster wave functions on the lattice using the adiabatic projection method

Towards an Understanding of Clustering in Nuclei from First Principles

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Bound states in a box

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces

Quantum Monte Carlo calculations of two neutrons in finite volume

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD

C.A. Bertulani, Texas A&M University-Commerce

EFT Approaches to αα and Nα Systems

Universality in Halo Systems

arxiv: v1 [nucl-th] 8 Nov 2013

Effective Field Theories in Nuclear and Hadron Physics

Nucleon-nucleon interaction in covariant chiral effective field theory

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions

From Halo EFT to Reaction EFT

RG & EFT for nuclear forces

improve a reaction calculation

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010

Modern Theory of Nuclear Forces

arxiv: v2 [nucl-th] 18 Jul 2016

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem

Neutron matter from chiral effective field theory interactions

Electroweak Probes of Three-Nucleon Systems

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

arxiv:nucl-th/ v4 6 Mar 2000

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Hadronic parity-violation in pionless effective field theory

Nucleon Nucleon Forces and Mesons

May 1, Pierre NZABAHIMANA Survey of Nuclear Physics PHY802 Instructor: α αprof. Scattering Witek Nazarewicz

arxiv:nucl-th/ v1 22 Sep 2000

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

Nuclear physics around the unitarity limit

Three-nucleon forces and neutron-rich nuclei

EFT as the bridge between Lattice QCD and Nuclear Physics

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Volume Dependence of N-Body Bound States

Constraints on neutron stars from nuclear forces

The NN system: why and how we iterate

Coulomb effects in pionless effective field theory

EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Effective Field Theory for light nuclear systems

arxiv:nucl-th/ v1 18 Feb 1999

Nuclear few- and many-body systems in a discrete variable representation basis

Chiral EFT for nuclear forces with Delta isobar degrees of freedom

Semi-Classical perturbation theory Coulomb only First-order most used

Local chiral NN potentials and the structure of light nuclei

Structure of near-threshold s-wave resonances

Three-particle scattering amplitudes from a finite volume formalism*

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Nuclear structure I: Introduction and nuclear interactions

Quantum Monte Carlo calculations of medium mass nuclei

The nucleon-nucleon system in chiral effective theory

arxiv: v2 [nucl-th] 23 Jul 2016

Renormalization group methods in nuclear few- and many-body problems

Quantum Monte Carlo calculations of the equation of state of neutron matter with chiral EFT interactions

Tritium β decay in pionless EFT

Nuclear Forces from Lattice QCD

Charming Nuclear Physics

Coupled-cluster theory for nuclei

POWER COUNTING WHAT? WHERE?

Neutrino processes in supernovae from chiral EFT

The Hoyle state in nuclear lattice effective field theory

Calculations of three-nucleon reactions

Low- and High-Energy Excitations in the Unitary Fermi Gas

arxiv:nucl-th/ v2 21 Dec 1999

Pion-nucleon scattering around the delta-isobar resonance

nuclear states nuclear stability

Pion photoproduction in a gauge invariant approach

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

The Nuclear Many-Body Problem

Quantum Monte Carlo calculations of neutron and nuclear matter

Renormalization group methods in nuclear few- and many-body problems

Continuum States in Drip-line Oxygen isotopes

Baryon-Baryon Forces from Lattice QCD

Meson Baryon Scattering

Resonance properties from finite volume energy spectrum

Role of Spin in NN NNπ

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Bayesian Fitting in Effective Field Theory

NUCLEAR FORCES. Historical perspective

Radiative-capture reactions

Few Body Methods in Nuclear Physics - Lecture I

Transcription:

Nuclear Reactions in Lattice EFT Gautam Rupak Mississippi State University Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NCSU) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn) Nuclear Physics from Lattice QCD, Institute for Nuclear Theory May 20, 2016

Outline Background and motivation Weakly bound systems at low energy Adiabatic projection method - proof of concept neutron capture proton-proton fusion n-d doublet channel, connection to lattice QCD

Astrophysics Motivations Low energy reactions dominate Need accurate cross sections but hard to measure experimentally Model-independent theoretical calculations important Theoretical Weakly bound systems are fun First principle calculation

Astrophysics Motivations Low energy reactions dominate Need accurate cross sections but hard to measure experimentally Model-independent theoretical calculations important Theoretical Weakly bound systems are fun First principle calculation Use Effective Field Theory

EFT: the long and short of it Identify degrees of freedom L = c 0 O (0) +c 1 O (1) +c 2 O (2) + expansion in Q Hide UV ignorance - short distance IR explicit - long distance Determine c n from data (elastic, inelastic) EFT : ERE + currents + relativity Not just Ward-Takahashi identity M. Savage s talk on two-body current

A low energy example 7 Li(n, ) 8 Li Isospin mirror systems 7 Li(n, ) 8 Li $ 7 Be(p, ) 8 B Inhomogeneous BBN Whats the theoretical error?

A low energy example 7 Li(n, ) 8 Li Isospin mirror systems 7 Li(n, ) 8 Li $ 7 Be(p, ) 8 B Inhomogeneous BBN Whats the theoretical error? (a) (b) (c) (d)

A low energy example 7 Li(n, ) 8 Li Isospin mirror systems 7 Li(n, ) 8 Li $ 7 Be(p, ) 8 B Inhomogeneous BBN Whats the theoretical error? Asymptotic normalization (a) (b) s p 1 Z = p2 1 1+3 /r 1 (c) (d)

A low energy example 7 Li(n, ) 8 Li Isospin mirror systems 7 Li(n, ) 8 Li $ 7 Be(p, ) 8 B Inhomogeneous BBN Whats the theoretical error? Asymptotic normalization (a) (c) (b) (d) s p 1 Z = p2 1 1+3 /r 1 Need effective range r1 and binding energy at leading order

A low energy example 7 Li(n, ) 8 Li Isospin mirror systems 7 Li(n, ) 8 Li $ 7 Be(p, ) 8 B Inhomogeneous BBN Whats the theoretical error? Asymptotic normalization (a) (c) (b) (d) Two EFT operators s p 1 Z = p2 1 1+3 /r 1 Need effective range r1 and binding energy at leading order

v.σ (µb) 0.8 0.6 0.4 0.2 Imhof A 59 Imhof B 59 Nagai 05 Blackmon 96 Lynn 91 0 10-2 10 0 10 2 10 4 10 6 E LAB (ev) Red: Tombrello Rupak, Higa; PRL 106, 222501 (2011) Fernando,Higa, Rupak; EPJA 48, 24 (2012) RADCAP: Bertulani CDXS+: Typel Blue: Davids-Typel Black: EFT

Reactions in lattice EFT Consider: a(b, )c ; a(b, c)d Need effective cluster Hamiltonian -- acts in cluster coordinates, spins,etc. Calculate reaction with cluster Hamiltonian. Many possibilities --- traditional methods, continuum EFT, lattice method

Adiabatic Projection Method Initial state ~ Ri Evolved state ~ Ri = e H ~ Ri h ~ R 0 H ~ Ri D. Lee s talk U.-G. Meißner s talk Energy measurements in cluster basis. Divide by the norm matrix as these are not orthogonal basis [N ] ~R, ~ R 0 = h ~ R ~ R 0 i Microscopic Hamiltonian Cluster Hamiltonian L 3 L 3(A 1) smaller matrices in practice!! -- acts on the cluster CM and spins

Proof of Concept n-d scattering in the quartet channel Low energy EFT is known, only two body Shallow deuteron (large coupling)

Spin-1/2 Fermions a nn 19 fm, R 1.4 fm 1.5x10 6 a a np 24 fm, R 1.4 fm atom number 1.0x10 6 5.0x10 5 Potassium-40 Regal et. al, Nature 2003 Tuning scattering lengths in lattice QCD with magnetic field scattering length (a o ) 0 2000 1000 0-1000 -2000 b -3000 215 220 225 230 B(G)

Weakly Bound Systems ia(p) = 2 i µ p cot 0 ip = 2 i µ 1/a + r 2 p2 + ip --- Large scattering length ia(p) 2 i µ 1/a + ip EFT non-perturbative a>>1/ apple 1+ 1 rp 2 2 1/a + ip + + + + ia(p) = C 0 i 1 + i µ C 0 2 p ) C 0 = 2 a µ large coupling Weinberg 90 Bedaque, van Kolck 97 Kaplan, Savage, Wise 98

Neutron-Deuteron System 25 20 Convergence: L=7, b=1/100 MeV 1 Pine, Lee, Rupak, EPJA 2013 E (MeV) 15 10 5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 τ (MeV 1 ) - grouping R found efficient, more later 30 30

Lüscher s Method p cot = 1 L S( ), = pl 2 2 E fd = p2 2µ B + (p)[b B L ] - effective mass - topological factor (Bour, Hammer, Lee, Meißner 2013)

Neutron-Deuteron System = + + = + + T (p) =h(p)+ Z dqk(p, q)t (q) T (p) = 2 µ 1 p cot ip

Neutron-Deuteron Phase Shift 0 δ 0 (degree) -20-40 breakup b=1/100 MeV -1 b=1/150 MeV -1 b=1/200 MeV -1 STM -60 Pine, Lee, Rupak, EPJA 2013-80 0 50 100 p (MeV)

Now, what can I do with an adiabatic Hamiltonian?

Primordial Deuterium p(n, )d

Warm Up p(n, )d = + + Exact analytic continuum result M C ( ) = 1 p 2 + 2 1 (1/a + ip )( ip ), p = p p 2 + im When! 0 +, M C reduces to known M1 result Rupak & Lee, PRL 2013

Lattice p(n, )d Write M( ) = h B O EM i i p 2 X M E i using retarded Green s function x,y B(y)hy E 1 Ĥ s + i xieip x cluster Hamiltonian goes here LSZ reduction in QM

Continuum Extrapolation M 1.15 1.1 1.05 0 0.05 0.1 0.15 s 0 = 1.012(18) s 0 = 1.009(16) s 0 = 1.005(07) p = 15.7 MeV p = 29.6 MeV p = 70.2 MeV φ 1 1.05 1 0.95 0.9 0.85 s 0 = 1.022(15) s 0 = 1.031(02) s 0 = 1.031(02) p = 15.7 MeV p = 29.6 MeV p = 70.2 MeV 0.8 0 0.05 0.1 0.15 δ = M/p 2 Fit : s 0 + s 1

Capture Amplitude M (MeV 2 ) 10-2 10-3 10-4 10-5 80 10 20 50 70 100 δ = 0.6 δ = 0.4 δ = 0 δ = 0.6 δ = 0.4 δ = 0 continuum results = M/p 2 φ (deg) 60 40 20 0 δ = 0.6 δ = 0.4 δ = 0 δ = 0.6 δ = 0.4 δ = 0 10 20 50 70 100 p (MeV) Rupak & Lee, PRL 2013

Something still missing...

Something still missing... long range Coulomb

Something still missing... long range Coulomb O p 2 O µ p 2 p

Proton-Proton Fusion p + p! d + e + + e long and steady burning

Proton fusion in continuum EFT W + = + + Kong, Ravndal 1999 Coulomb ladder Peripheral scattering but how to calculate on the lattice? Consider elastic proton-proton scattering as a warmup

Spherical-wall method R w short(r) / j 0 (kr) cot s n 0 (kr), Coulomb(r) / F 0 (kr) cot sc + G 0 (kr) Adjust from free theory: j 0 (k 0 R w )=0 IR scale setting L/2 L/2 Hard spherical wall boundary conditions, Borasoy et al. 2007 Carlson et al. 1984 Even older?

Coulomb Subtracted Phase Shift δ sc (degree) 60 50 40 30 20 10 Analytic b=1/100 MeV 1 b=1/200 MeV 1 Rupak, Ravi PLB 2014 0 0 5 10 15 20 25 30 p (MeV) 3% error in fits T =T c + T sc T c 2 µ T 2 µ e 2i 1 2ip e 2i( + sc) 1 2ip

Proton-proton fusion 3% fitting error propagates Gamow peak 6 kev T fi (MeV 1 ) 0.05 0.04 0.03 0.02 Analytic b=1/100 MeV 1 b=1/200 MeV 1 0.01 (p) = s 2 8 C 2 T fi (p) 0 0 200 400 600 800 1000 1200 E (kev) EFT (0) 2.51 Lattice fit : (0) 2.49 ± 0.02 Kong, Ravndal 1999 Rupak, Ravi PLB 2014

More on adiabatic Projection 180 60 30 d 150 120 S 1 S0 50 40 30 25 20 15 D 1 D2 90 60 20 10 P 1 P1 10 5 a R ` (degress) 30 20 0 30 60 90 120 0 10 0 30 60 90 120 0 0 30 60 90 120 a 16 12 8 F 1 F3 8 6 4 Continuum 1 G4 a R =0.010 l.u. G a R =0.125 l.u. a R =0.250 l.u. 4 2 binning used 0 0 earlier 0 30 60 90 120 0 30 60 90 120 p (MeV) Toy model, two-body Elhatisari, Lee, Meißner, Rupak, arxiv 1603.02333

Two-cluster simulation L 0 3 L 3 R in copy R w 0 (degrees) 0 15 30 45 Breakup n d n d (EFT) p d p d (EFT) 60 Quartet S 75 1 3 5 7 9 11 1 3 0.14 0.12 90 0 20 40 60 80 100 120 140 p (MeV) Matching: 15 to 82 5 7 L t = 15 0.1 0.08 0.06 Better lattice results than before 0.04 9 11 0.02 Fermion-dimer

Improvement δ 0 (degree) 0-20 -40 breakup b=1/100 MeV -1 b=1/150 MeV -1 b=1/200 MeV -1 STM 0 (degrees) 0 15 30 45 Breakup n d n d (EFT) p d p d (EFT) -60 60 Quartet S -80 0 50 100 p (MeV) 75 90 0 20 40 60 80 100 120 140 p (MeV) Pine, Lee, Rupak (2013) Elhatisari, Lee, Meißner, Rupak (2016)

n-d doublet channel (/) - - - - - - - p cot = 1/a + rp2 /2 1+p 2 /p 2 0 a 0.65 fm, r 150 fm, p 0 13 MeV / ERE form van Oers & Seagrave (1967) -what EFT for modified ERE Virtual state at 0.5 MeV Girard & Fuda (1979) - Efimov physics

Efimov plot Preliminary Higa, Rupak, Vaghani, van Kolck Shallow virtual to bound state

Efimov plot Preliminary Higa, Rupak, Vaghani, van Kolck Shallow virtual to bound state

Efimov plot Preliminary Higa, Rupak, Vaghani, van Kolck Shallow virtual to bound state lattice QCD with B field, even with heavy pions?

Phillips-Girard-Fuda () Preliminary () 3-body correlation

Adhikari-Torreao () Preliminary - - - - () Adhikari-Torreao Virtual

Conclusions Adiabatic Projection Method to derive effective two-body Hamiltonian Retarded Green s function for problems without long-range Coulomb Spherical wall method with adiabatic Hamiltonian when long range Coulomb important Efimov physics from lattice QCD?

Thank you