Chapter 25. Electric Potential

Similar documents
Chapter 25. Electric Potential

What will the electric field be like inside the cavity?

Electric Potential Lecture 5

EX. Potential for uniformly charged thin ring

Electric Potential Energy & Voltage. Tesla Envy =jlzeqz4efqa&feature=related

Electrical Potential Energy. Chapter 25. Electric Potential Energy, final. Electric Potential Energy. Electric Potential.

Electrostatics so far

Chapter 24. Gauss s Law

Chapter 17 & 18. Electric Field and Electric Potential

MTE1 results. Mean 75% = 90/120

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields

Electric Potential Energy Chapter 16

Electric Potential II

Electric Potential. 1/28/14 Physics for Scientists & Engineers 2, Chapter 23 1

General Physics (PHY 2140)

Chapter 1 The Electric Force

PHYS ST semester Dr. Nadyah Alanazi. Lecture 11

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

Lesson 3. Electric Potential. Capacitors Current Electricity

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian

Chapter 15. Electric Forces and Electric Fields

4 Chapter. Electric Potential

Chapter 22 Electric Potential (Voltage)

Chapter 15. Electric Forces and Electric Fields

Lecture 4 Electric Potential and/ Potential Energy Ch. 25

Electric Potential (Chapter 25)

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Electric Potential. 1/22/14 Physics for Scientists & Engineers 2, Chapter 23 1

Electric Potential. Capacitors (Chapters 28, 29)

Chapter 23 Electric Potential (Voltage)

Chapter 16. Electric Energy and Capacitance

Electricity and Magnetism. Electric Potential Energy and Voltage

Chapter 19 Electric Potential and Electric Field

Chapter 25. Electric Potential

Physics Notes Chapter 17 Electric Forces and Fields

Chapter 23. Electric Fields

Physics 1202: Lecture 3 Today s Agenda

Ch 25 Electric Potential

Chapter 24. QUIZ 6 January 26, Example: Three Point Charges. Example: Electrostatic Potential Energy 1/30/12 1

Chapter 23. Electric Fields

Electrical Potential Energy and Electric Potential (Chapter 29)

CH 24. Electric Potential

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts:

General Physics (PHY 2140)

HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4. Chapter 16. Part 1: Electric Forces and Electric Fields. Dr. Armen Kocharian

PHYSICS. Electrostatics

Ch 25 Electric Potential! Electric Energy, Electric Potential!

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9.

PHYS102 Previous Exam Problems. Electric Potential

Physics 1302W.500 Lecture 9 Introductory Physics for Scientists and Engineering II

Electrostatics. Electrical properties generated by static charges. Introduction

Solution. ANSWERS - AP Physics Multiple Choice Practice Electrostatics. Answer

Electric Potential Energy

7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged?

Class XII Chapter 1 Electric Charges And Fields Physics

Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, Key concepts:

Electric Fields Part 1: Coulomb s Law

Electric Potential. Chapter 23. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

PHYS 221 General Physics II

Chapter 21 Chapter 24. Electric Potential. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

free space (vacuum) permittivity [ F/m]

Chapter 17. Electric Potential Energy and the Electric Potential

Downloaded from

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51

Physics 222, Spring 2010 Quiz 3, Form: A

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below

+2Q -2Q. (a) 672 N m 2 /C (b) 321 N m 2 /C (c) 105 N m 2 /C (d) 132 N m 2 /C (e) 251 N m 2 /C

Ch 7 Electric Potential

Electric Potential Practice Problems

Chapter 20 & 21: Electrostatics

Chapter 24. Electric Potential

Essential University Physics

1. The diagram shows the electric field lines produced by an electrostatic focussing device.

Halliday/Resnick/Walker Fundamentals of Physics

Experiment 17 Electric Fields and Potentials

What You Already Know

LESSON 2 PHYSICS NOTES

Lecture 15. PHYC 161 Fall 2016

Introduction)! Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents)

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

You should be able to demonstrate and show your understanding of:

PH 222-2A Spring 2015

r 4 r 2 q 2 r 3 V () r En dln (r) 1 q 1 Negative sign from integration of E field cancels the negative sign from the original equation.

Electric Force and Potential Energy

Chapter 10. Electrostatics

Summary of electrostatics

Potentials and Fields

Chapter 21. Electric Fields

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 24. Gauss s Law

Consider a point P on the line joining the two charges, as shown in the given figure.

Electric Force and Coulombs Law

Electrostatics Notes 1 Charges and Coulomb s Law

Handout 3: Electric potential and electric potential energy. Electric potential

21.4 Electric Field and Electric Forces

Chapter 21 Electric Potential

7 ELECTRIC POTENTIAL

Transcription:

Chapter 25 Electric Potential

Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an energy approach, problems could be solved that were insoluble using forces. The concept of potential energy is of great value in the study of electricity. Introduction 2

Electric Potential Because the electrostatic force is conservative, electrostatic phenomena can be conveniently described in terms of an electric potential energy. This will enable the definition of electric potential. 3

Electrical Potential Energy When a test charge is placed in an electric field, it experiences a force. Fe q 0 E The force is conservative. If the test charge is moved in the field by some external agent, the work done by the field is the negative of the work done by the external agent. Section 25.1 4

Electrical Potential Energy, cont ds is an infinitesimal displacement vector that is oriented tangent to a path through space. The path may be straight or curved and the integral performed along this path is called either a path integral or a line integral. The work done within the charge-field system by the electric field on the charge is Fds q Eds 0 5

Electric Potential Energy, final As this work is done by the field, the potential energy of the charge-field system is changed by U q Eds 0 For a finite displacement of the charge from A to B, the change in potential energy of the system is B A 0 A Because the force is conservative, the line integral does not depend on the path taken by the charge. B U U U q E d s (25.1) Section 25.1 6

Electric Potential The potential energy per unit charge, U/q 0, is the electric potential. The potential is characteristic of the field only. The potential energy is characteristic of the charge-field system. The potential is independent of the value of q 0. The potential has a value at every point in an electric field. The electric potential is V U q 0 (25.2) Section 25.1 7

Electric Potential, cont. The potential is a scalar quantity. Since energy is a scalar As a charged particle moves in an electric field, it will experience a change in potential. U B V d (25.3) q E s A 0 The infinitesimal displacement is interpreted as the displacement between two points in space rather than the displacement of a point charge. The difference in potential is the meaningful quantity. Section 25.1 8

Electric Potential, final We often take the value of the potential to be zero at some convenient point in the field. Electric potential is a scalar characteristic of an electric field, independent of any charges that may be placed in the field. The potential difference between two points exists solely because of a source charge and depends on the source charge distribution. For a potential energy to exist, there must be a system of two or more charges. The potential energy belongs to the system and changes only if a charge is moved relative to the rest of the system. Section 25.1 9

Work and Electric Potential Assume a charge moves in an electric field without any change in its kinetic energy. The work performed on the charge is W = U = q V (25.4) Units: 1 V 1 J/C V is a volt. It takes one joule of work to move a 1-coulomb charge through a potential difference of 1 volt. Section 25.1 10

Work and Electric Potential In addition, 1 N/C = 1 V/m This indicates we can interpret the electric field as a measure of the rate of change of the electric potential with respect to position. 11

Voltage Electric potential is described by many terms. The most common term is voltage. A voltage applied to a device or across a device is the same as the potential difference across the device. The voltage is not something that moves through a device. Section 25.1 12

Electron-Volts Another unit of energy that is commonly used in atomic and nuclear physics is the electron-volt. One electron-volt is defined as the energy a charge-field system gains or loses when a charge of magnitude e (an electron or a proton) is moved through a potential difference of 1 volt. 1 ev = 1.60 10 19 J (25.5) Section 25.1 13

Quick Quiz 25.1 In Figure 25.1, two points A and B are located within a region in which there is an electric field. (i) How would you describe the potential difference ΔV = V B V A? (a) It is positive. (b) It is negative. (c) It is zero. (ii) A negative charge is placed at A and then moved to B. How would you describe the change in potential energy of the charge field system for this process? Choose from the same possibilities. Answer: (i) (b) (ii) (a) 14

Potential Difference in a Uniform Field The equations for electric potential between two points A and B can be simplified if the electric field is uniform: The displacement points from A to B and is parallel to the field lines. The negative sign indicates that the electric potential at point B is lower than at point A. Electric field lines always point in the direction of decreasing electric potential. B B B A E s s A A V V V d E d Ed (25.6) Section 25.2 15

Energy and the Direction of Electric Field When the electric field is directed downward, point B is at a lower potential than point A. When a positive test charge moves from A to B, the chargefield system loses potential energy. Electric field lines always point in the direction of decreasing electric potential. Section 25.2 16

If you can't see the image above, please install Shockwave Flash Player. If this active figure can t auto-play, please click right button, then click play. 25.2: Electric Potential and Gravitational Potential A charge q and a mass m are released in a uniform electric field and gravitation field, respectively. Both objects accelerate from release point A to final point B in the field. The animated bar charts show kinetic and potential energies of the two objectfield systems during the motion. The readout boxes display the initial and final electric potential energies (EPE) and the initial and final gravitational potential energies (GPE), as well as the potential difference between points A and B in the electric field, all in SI units. 17

More About Directions A system consisting of a positive charge and an electric field loses electric potential energy when the charge moves in the direction of the field. An electric field does work on a positive charge when the charge moves in the direction of the electric field. The charged particle gains kinetic energy and the potential energy of the charge-field system decreases by an equal amount. Another example of Conservation of Energy Section 25.2 18

Directions, cont. If q 0 is negative, then U is positive. A system consisting of a negative charge and an electric field gains potential energy when the charge moves in the direction of the field. In order for a negative charge to move in the direction of the field, an external agent must do positive work on the charge. Section 25.2 19

Equipotentials Point B is at a lower potential than point A. Points A and C are at the same potential. All points in a plane perpendicular to a uniform electric field are at the same electric potential. The name equipotential surface is given to any surface consisting of a continuous distribution of points having the same electric potential. Section 25.2 20

Charged Particle in a Uniform Field, Example A positive charge is released from rest and moves in the direction of the electric field. The change in potential is negative. The change in potential energy is negative. The force and acceleration are in the direction of the field. Conservation of Energy can be used to find its speed. Section 25.2 21

Quick Quiz 25.2 The labeled points in Figure 25.4 are on a series of equipotential surfaces associated with an electric field. Rank (from greatest to least) the work done by the electric field on a positively charged particle that moves from A to B, from B to C, from C to D, and from D to E Answer: B to C, C to D, A to B, D to E 22

Example 25.1 A battery has a specified potential difference V between its terminals and establishes that potential difference between conductors attached to the terminals. A 12-V battery is connected between two parallel plates as shown in Figure 25.5. The separation between the plates is d = 0.30 cm, and we assume the electric field between the plates to be uniform. (This assumption is reasonable if the plate separation is small relative to the plate dimensions and we do not consider locations near the plate edges.) Find the magnitude of the electric field between the plates. Solution: E V B V d A 12V 3 4.010 V/m 2 0.3010 m 23

Example 25.1 24

Example 25.2 A proton is released from rest at point A in a uniform electric field that has a magnitude of 8.0 10 4 V/m (Fig. 25.6). The proton under-goes a displacement of magnitude d = 0.50 m to point in the direction of B. Find the speed of the proton after completing the displacement. E 25

Example 25.2 Solution: V Ed K U 0 1 mv 2 2 2eV v m v 4 4 (8.0 10 V/m)(0.50m) 4.0 10 V 0 ev 0 19 4 2(1.610 C)( 4.010 V) 27 1.6710 kg 6 2.8 10 m/s 26

Potential and Point Charges An isolated positive point charge produces a field directed radially outward. The potential difference between points A and B will be 1 1 VBVA keq r B r Α (25.10) Section 25.3 27

Potential and Point Charges, cont. The electric potential is independent of the path between points A and B. It is customary to choose a reference potential of V = 0 at r A =. Then the potential due to a point charge at some point r is V q ke r (25.11) Section 25.3 28

Electric Potential of a Point Charge The electric potential in the plane around a single point charge is shown. The red line shows the 1/r nature of the potential. Section 25.3 29

Electric Potential with Multiple Charges The electric potential due to several point charges is the sum of the potentials due to each individual charge. This is another example of the superposition principle. The sum is the algebraic sum V = 0 at r = V k e i q r i i (25.12) Section 25.3 30

Electric Potential of a Dipole The graph shows the potential (y-axis) of an electric dipole. The steep slope between the charges represents the strong electric field in this region. Section 25.3 31

Potential Energy of Multiple Charges The potential energy of the system is U k e qq r 1 2 12 (25.13) Section 25.3 32

Potential Energy of Multiple Charges If the two charges are the same sign, U is positive and work must be done to bring the charges together. If the two charges have opposite signs, U is negative and work is done to keep the charges apart. 33

If you can't see the image above, please install Shockwave Flash Player. If this active figure can t auto-play, please click right button, then click play. 25.9: Electric Potential and Potential Energy In this animation, you can move the negative (blue) charge in the upper left square or the point P in the upper right square. The animation moves both in tandem, but the two squares represent two separate experiments. 34

U with Multiple Charges, final If there are more than two charges, then find U for each pair of charges and add them. For three charges: U qq q q q q 1 2 1 3 2 3 ke r12 r13 r23 (25.14) The result is independent of the order of the charges. Section 25.3 35

Quick Quiz 25.3 In Active Figure 25.9a, take q 1 to be a negative source charge and q 2 to be the test charge. (i) If q 2 is initially positive and is changed to a charge of the same magnitude but negative, what happens to the potential at the position of q 2 due to q 1? (a) It increases. (b) It decreases. (c) It remains the same. (ii) When q 2 is changed from positive to negative, what happens to the potential energy of the two-charge system? Choose from the same possibilities. Answer: (i) (c) (ii) (a) 36

Example 25.3 As shown in Figure 25.11a, a charge q l = 2.00 mc is located at the origin and a charge q 2 = 6.00 mc is located at (0, 3.00) m. 37

Example 25.3 (A) Find the total electric potential due to these charges at the point P, whose coordinates are (4.00, 0) m. Solution: V V p p k e q r q r 1 2 1 2 6 6 9 2 2 2.0010 C 6.0010 C (8.9910 N m /C ) 3 6.2910 V 4.00 m 5.00 m 38

Example 25.3 (B) Find the change in potential energy of the system of two charges plus a third charge q 3 = 3.00 mc as the latter charge moves from infinity to point P (Fig. 25.11b). Solution: U f q V 3 p U U f U i q V 3 p 0 (3.0010 6 C)( 6.2910 3 V) 1.8910 2 J 39

Finding E From V Assume, to start, that the field has only an x component. E x dv dx (25.16) Similar statements would apply to the y and z components. Equipotential surfaces must always be perpendicular to the electric field lines passing through them. Section 25.4 40

E and V for an Infinite Sheet of Charge The equipotential lines are the dashed blue lines. The electric field lines are the brown lines. The equipotential lines are everywhere perpendicular to the field lines. Section 25.4 41

E and V for a Point Charge The equipotential lines are the dashed blue lines. The electric field lines are the brown lines. The electric field is radial. dv Er dr The equipotential lines are (25.17) everywhere perpendicular to the field lines. Section 25.4 42

E and V for a Dipole The equipotential lines are the dashed blue lines. The electric field lines are the brown lines. The equipotential lines are everywhere perpendicular to the field lines. Section 25.4 43

Electric Field from Potential, General In general, the electric potential is a function of all three dimensions. Given V(x, y, z) you can find E x, E y and E z as partial derivatives: V V V Ex Ey Ez x y z (15.18) Section 25.4 44

Quick Quiz 25.4 In a certain region of space, the electric potential is zero everywhere along the x axis. (i) From this information, you can conclude that the x component of the electric field in this region is (a) zero, (b) in the positive x direction, or (c) in the negative x direction. (ii) Suppose the electric potential is +2 V everywhere along the x axis. From the same choices, what can you conclude about the x component of the electric field now? Answer: (i) (a) (ii) (a) 45

Example 25.4 An electric dipole consists of two charges of equal magnitude and opposite sign separated by a distance 2a as shown in Figure 25.l3. The dipole is along the x axis P and is centered at the origin. 46

Example 25.4 (A) Calculate the electric potential at point P on the y axis. Solution: q i q q Vp k e ke 0 2 2 2 2 i r i a y a y (B) Calculate the electric potential at point R on the positive x axis. Solution: q q q 2k qa V k k r x a x a x a i R e e i i e 2 2 47

Example 25.4 (C) Calculate V and E x at a point on the x axis far from the dipole. Solution: 2keqa 2keqa VR lim( ) ( x a) xa 2 2 2 x a x dv d 2keqa Ex 2 dx dx x d 1 4keqa 2 keqa ( x a) 2 3 dx x x 48

Electric Potential for a Continuous Charge Distribution Method 1: The charge distribution is known. Consider a small charge element dq Treat it as a point charge. The potential at some point due to this charge element is dq dv ke r (25.19) Section 25.5 49

V for a Continuous Charge Distribution, cont. To find the total potential, you need to integrate to include the contributions from all the elements. dq V k e r This value for V uses the reference of V = 0 when P is infinitely far away from the charge distributions. (25.20) 50

V for a Continuous Charge Distribution, final If the electric field is already known from other considerations, the potential can be calculated using the original approach: B V E d s A If the charge distribution has sufficient symmetry, first find the field from Gauss Law and then find the potential difference between any two points, Choose V = 0 at some convenient point Section 25.5 51

Problem-Solving Strategies Conceptualize Think about the individual charges or the charge distribution. Imagine the type of potential that would be created. Appeal to any symmetry in the arrangement of the charges. Categorize Group of individual charges or a continuous distribution? The answer will determine the procedure to follow in the analysis step. Section 25.5 52

Problem-Solving Strategies, 2 Analyze General Scalar quantity, so no components Use algebraic sum in the superposition principle Keep track of signs Only changes in electric potential are significant Define V = 0 at a point infinitely far away from the charges. If the charge distribution extends to infinity, then choose some other arbitrary point as a reference point. Section 25.5 53

Problem-Solving Strategies, 3 Analyze, cont If a group of individual charges is given Use the superposition principle and the algebraic sum. If a continuous charge distribution is given Use integrals for evaluating the total potential at some point. Each element of the charge distribution is treated as a point charge. Section 25.5 54

Problem-Solving Strategies, 4 If the electric field is given Start with the definition of the electric potential. Find the field from Gauss Law (or some other process) if needed. 55

Problem-Solving Strategies, final Finalize Check to see if the expression for the electric potential is consistent with your mental representation. Does the final expression reflect any symmetry? Image varying parameters to see if the mathematical results change in a reasonable way. Section 25.5 56

V for a Uniformly Charged Ring P is located on the perpendicular central axis of the uniformly charged ring. The symmetry of the situation means that all the charges on the ring are the same distance from point P. The ring has a radius a and a total charge Q. Section 25.5 57

V for a Uniformly Charged Ring The potential and the field are given by V k E x e dq kq e r a x kx e Q 3/ 2 2 2 a x 2 2 (25.21) (25.22) 58

V for a Uniformly Charged Disk The ring has a radius R and surface charge density of s. P is along the perpendicular central axis of the disk. P is on the cental axis of the disk, symmetry indicates that all points in a given ring are the same distance from P. Section 25.5 59

V for a Uniformly Charged Disk The potential and the field are given by 1 2 2 2 V 2kes R x x E x 2kes 1 R x x 2 2 1/ 2 (25.23) (25.24) Section 25.5 60

V for a Finite Line of Charge A rod of line l has a total charge of Q and a linear charge density of l. There is no symmetry to use, but the geometry is simple. V 2 2 Q a ke ln a (25.25) Section 25.5 61

Example 25.5 (A) Find an expression for the electric potential at a point P located on the perpendicular central axis of a uniformly charged ring of radius a and total charge Q. Solution: V V k e dq r k a 2 e x 2 k e a dq dq 2 2 x k Q a e 2 x 2 (25.21) 62

Example 25.5 (B) Find an expression for the magnitude of the electric field at point P. Solution: dv d Ex keq ( a x ) dx dx E x 2 2 1/ 2 1 2 2 3/ 2 = keq 2 ( a x ) (2 x) kx ( a x ) e 2 2 3/ 2 Q (25.21) 63

Example 25.6 A uniformly charged disk has radius R and surface charge density s. 64

Cont. 25.6 (A) Find the electric potential at a point P along the perpendicular central axis of the disk. Solution: dq s da s (2rdr) 2srdr kedq ke 2srdr dv 2 2 2 2 r x r x R 1/ 2rdr R 2 2 V kes k ( r x ) 0 2 2 es 0 r x (B) Find the x component of the electric field at a point P along the perpendicular central axis of the disk. Solution: V E 2k s[( R x e dv dx 2 x 2 ) 1/ 2 x] 2k e 2 2 1/ 2 s[1 ( R x x ) ] 2 2rdr (25.23) (25.24) 65

Example 25.7 A rod of length l, located along the x axis has a total charge Q and a uniform linear charge density l. Find the electric potential at a point P located on the y axis a distance a from the origin (Fig. 25.l7). 66

Example 25.7 Solution: dq ldx dv ke ke r 2 2 a x ldx V k 0 e 2 2 a x ldx Q V kel k a x x a x V k Q [ln( 2 a 2 ) ln a] e 2 2 0 2 2 e ln( ) 0 2 2 Q a ke ln a (25.25) 67

V Due to a Charged Conductor Consider two points on the surface of the charged conductor as shown. E is always perpendicular to the displacement. Therefore, ds Eds 0 Therefore, the potential difference between A and B is also zero. Section 25.6 68

V Due to a Charged Conductor, cont. V is constant everywhere on the surface of a charged conductor in equilibrium. V = 0 between any two points on the surface The surface of any charged conductor in electrostatic equilibrium is an equipotential surface. Every point on the surface of a charge conductor in equilibrium is at the same electric potential. Because the electric field is zero inside the conductor, we conclude that the electric potential is constant everywhere inside the conductor and equal to the value at the surface. Section 25.6 69

Irregularly Shaped Objects The charge density is high where the radius of curvature is small. And low where the radius of curvature is large The electric field is large near the convex points having small radii of curvature and reaches very high values at sharp points. Section 25.6 70

Example 25.8 Two spherical conductors of radii r l and r 2 are separated by a distance much greater than the radius of either sphere. The spheres are connected by a conducting wire as shown in Figure 25.20. The charges on the spheres in equilibrium are q l and q 2, respectively, and they are uniformly charged. Find the ratio of the magnitudes of the electric fields at the surfaces of the spheres. 71

Example 25.8 Solution: q V ke k r (1) 1 2 e 1 r2 1 1 2 2 q E k and E k E E 1 2 1 e 2 2 e 2 r1 r2 (2) q q q r r r 2 1 1 2 2 2 q2 r1 q E r r r E r r r 2 1 1 2 2 2 2 2 1 1 q 72

Cavity in a Conductor Assume an irregularly shaped cavity is inside a conductor. Assume no charges are inside the cavity. The electric field inside the conductor must be zero. Section 25.6 73

Cavity in a Conductor, cont The electric field inside does not depend on the charge distribution on the outside surface of the conductor. For all paths between A and B, V B V d A E s B A 0 A cavity surrounded by conducting walls is a field-free region as long as no charges are inside the cavity. Section 25.6 74

Corona Discharge If the electric field near a conductor is sufficiently strong, electrons resulting from random ionizations of air molecules near the conductor accelerate away from their parent molecules. These electrons can ionize additional molecules near the conductor. This creates more free electrons. The corona discharge is the glow that results from the recombination of these free electrons with the ionized air molecules. The ionization and corona discharge are most likely to occur near very sharp points. 75

Millikan Oil-Drop Experiment Robert Millikan measured e, the magnitude of the elementary charge on the electron. He also demonstrated the quantized nature of this charge. Oil droplets pass through a small hole and are illuminated by a light. Section 25.7 76

Millikan Oil-Drop Experiment Experimental Set-Up Section 25.7 77

If you can't see the image above, please install Shockwave Flash Player. If this active figure can t auto-play, please click right button, then click play. 25.22: The Millikan Oil-Drop Experiment This animation shows a simplified version of the apparatus used by Robert Millikan to measure the elementary charge on an electron. 78

Oil-Drop Experiment, 2 With no electric field between the plates, the gravitational force and the drag force (viscous) act on the electron. The drop reaches terminal velocity with F D mg Section 25.7 79

Oil-Drop Experiment, 3 An electric field is set up between the plates. The upper plate has a higher potential. The drop reaches a new terminal velocity when the electrical force equals the sum of the drag force and gravity. Section 25.7 80

Oil-Drop Experiment, final The drop can be raised and allowed to fall numerous times by turning the electric field on and off. After many experiments, Millikan determined: q = ne where n = 0, 1, 2, 3, e = 1.60 10 19 C This yields conclusive evidence that charge is quantized. Section 25.7 81

Van de Graaff Generator Charge is delivered continuously to a highpotential electrode by means of a moving belt of insulating material. The high-voltage electrode is a hollow metal dome mounted on an insulated column. Large potentials can be developed by repeated trips of the belt. Protons accelerated through such large potentials receive enough energy to initiate nuclear reactions. Section 25.8 82

Electrostatic Precipitator An application of electrical discharge in gases is the electrostatic precipitator. It removes particulate matter from combustible gases. The air to be cleaned enters the duct and moves near the wire. Section 25.8 83

Electrostatic Precipitator As the electrons and negative ions created by the discharge are accelerated toward the outer wall by the electric field, the dirt particles become charged. Most of the dirt particles are negatively charged and are drawn to the walls by the electric field. 84

Electrostatic Precipitator 85