Light source thermal analysis I Sodium high-pressure discharge Lamp

Similar documents
Light source thermal analysis II Incandescent Lamp

Electromagnetism in finite element method

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

SOLIDWORKS Simulation Time Based Thermal Stress

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Heat transfer analysis in wire bundles for aerospace vehicles

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

If there is convective heat transfer from outer surface to fluid maintained at T W.

Examination Heat Transfer

The magnetic fields of inset Permanent Magnet Synchronous Motor

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Thermo-mechanical Investigation of Ventilated Disc Brake with Finite Element Analysis

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

The energy performance of an airflow window

Magnetic and Thermal Analysis of Current Transformer in Normal and Abnormal Conditions

Transient Coupled Field Solution for a Pion / Muon Collector

HIMARC Simulations Divergent Thinking, Convergent Engineering

Thermal Management of SMT LED Application Note

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?

Extensions to the Finite Element Technique for the Magneto-Thermal Analysis of Aged Oil Cooled-Insulated Power Transformers

Axial profiles of heat transfer coefficients in a liquid film evaporator

Fracture Mechanics in Quartz Lamps

THE ELECTRO-THERMAL LINK FINITE ELEMENT FOR MULTIPHYSICAL ANALYSIS WITH 3D SPATIAL FUNCTIONALLY GRADED MATERIAL PROPERTIES

I, THERMAL ANALYSIS OF BUS-BAR FOR SWITCH BOARD

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA

PH2200 Practice Final Exam Summer 2003

THEORETICAL STUDY AND FINITE ELEMENT ANALYSIS OF CONVECTIVE HEAT TRANSFER AUGMENTATION FROM HORIZONTAL RECTANGULAR FIN WITH CIRCULAR PERFORATION

Ampacity simulation of a high voltage cable to connecting off shore wind farms

Thermal Unit Operation (ChEg3113)

Coupled CFD-FE-Analysis for the Exhaust Manifold of a Diesel Engine

AnalysisofElectroThermalCharacteristicsofaConductiveLayerwithCracksandHoles

LINK ELEMENT WITH VARYING ELECTRIC CONDUCTANCE

Natural convection heat transfer around a horizontal circular cylinder near an isothermal vertical wall

RC Studies Relaxation Oscillator

PUBLICATION. Thermal Design of an Nb3Sn High Field Accelerator Magnet

Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco

THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER

Understanding Hot-Wire Anemometry

Module 2. Measurement Systems. Version 2 EE IIT, Kharagpur 1

FINAL Examination Paper (COVER PAGE) Programme : BACHELOR OF ENGINEERING (HONS) IN MECHANICAL ENGINEERING PROGRAMME (BMEGI)

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN

Review: Conduction. Breaking News

March 26, Title: TEMPO 21 Report. Prepared for: Sviazinvest, OJSC. Prepared by: Cree Durham Technology Center (DTC) Ticket Number: T

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104.

Comparison of Finite Element Analysis to IEC for Predicting Underground Cable Ampacity

THERMO-MECHANICAL ANALYSIS IN PERFORATED ANNULAR FIN USING ANSYS

Finite Element Analysis of the Heat Transfer in a Copper Mould during Continuous Casting of Steel Slabs. 14 May 2005

The Increasing Importance of the Thermal Management for Modern Electronic Packages B. Psota 1, I. Szendiuch 1

Hybrid predictive controller based on Fuzzy-Neuro model

E. not enough information given to decide

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

VHITAL-160 thermal model building and 3D thermal modeling carrying-out

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER

NO. 13, LIGHT BULB: NUMERICAL AND EXPERIMENTAL EVALUATION OF THE EFFICIENCY. Reza Montazeri Namin a Alireza Tahmaseb Zadeh b

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010

Simplifying a model of short subsequent sections containing a common detailed cross-section.

Thermal Analysis. inspiration

11. Advanced Radiation

FINITE ELEMENT METHOD IN HIGH INTENSITY PLASMA DISCHARGE MODELING

Nusselt, Rayleigh, Grashof, And Prandtl: Direct Calculation of A Userdefined Convective Heat Flux

Product Description. MASTERColour CDM-T. Benefits. Features. Application. Versions

Heat Transfer Analysis of Machine Tool Main Spindle

Physics 196 Final Test Point

/ / /

Product Description HPI-T. Quartz metal halide lamps with clear outer bulb

Conjugate heat transfer from an electronic module package cooled by air in a rectangular duct

PHYSICAL MECHANISM OF NATURAL CONVECTION

Sensing, Computing, Actuating

Introduction to Heat and Mass Transfer. Week 7

Chapter 3 NATURAL CONVECTION

Chapter 10: Steady Heat Conduction

The FTU facilities. Regarding the the control and data acquisition system, last year we carried out the following activities:

CHAPTER 8 CONSERVATION LAWS

Measurement of Conductivity of Liquids

Fall 2014 Qualifying Exam Thermodynamics Closed Book

HEAT AND MASS TRANSFER. List of Experiments:

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

Higher -o-o-o- Past Paper questions o-o-o- 3.3 Photoelectric

MATHEMATICAL MODELING OF A COMBINED HOT-WATER HEATING SYSTEM BY MEANS OF THE FINITE ELEMENT METHOD

heat transfer process where a liquid undergoes a phase change into a vapor (gas)

Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

Steam Generator Tubing Inspection

595,7 ± 1,2. [in mm] 25,0 ± 1,5

Summary: Applications of Gauss Law

Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys

Thermal analysis of magnetic shields for induction heating P. Sergeant 1,2 D. Hectors 3 L. Dupré 1 K. Van Reusel 1,3

TUBE BANKS TEST PROBLEMS

Current Electricity. ScienceLinks 9, Unit 4 SciencePower 9, Unit 3

Theoretical basis and practice application calculation of radiation heat transfer by light design program

Dr. Michael Müller. Thermal Management for LED applications

CRYOGENIC CONDUCTION COOLING TEST OF REMOVABLE PANEL MOCK-UP FOR ITER CRYOSTAT THERMAL SHIELD

Heraeus Noblelight is a global

Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur

Phys2120 Spring 2017 Practice Exam 1. Chapters Name

A Finite Element Model for Numerical Analysis of Sintering

ANALYSIS OF THERMAL STRESSES OF SOLAR PARABOLIC TROUGH COLLECTOR FOR SOLAR POWER PLANT BY FEM

Peltier Application Note

Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led Application by using CFD

Transcription:

1 Portál pre odborné publikovanie ISSN 1338-0087 Light source thermal analysis I Sodium high-pressure discharge Lamp Fric Róbert Elektrotechnika 24.11.2010 This is the first chapter from the series of papers focused on complex diagnostics and analysis of the temperature field in the light source that is caused by the light source generated heat. In this paper the specification of the high pressure sodium lamp as a heat source has been made. The analytical heating evaluation has been made and also the temperatures of the lamp have been measured. The finite element analysis of this thermal problem also helps to compare the results of used methods of thermal analysis. 1. Background In general, the thermal phenomena is closely related with the functionality, safety and durability of the lighting device. During the design process of the lighting devices we have to allow for temperature limitations which can occur during operation. In many cases the choice of materials depends on expected thermal stress. Uncontrolled heat loss of the light source can cause damages or unwanted changes of light parameters. The goal of the complex analysis is the application of this methods early during design process of the device. It is appropriate to analyze the temperature field together with ideas of the lighting device, especially the lamps. Hereby we can avoid unwanted effects or directly choose the placement of the components for perfect setting of the heat fluxes and temperatures inside the device. Then the device not only meet the standards, but also the heat transfer and cooling work properly. 2. Heat source specification To make the analysis using any method, we need to know the heat sources inside the lamp as exactly as possible. The colour temperature of the high-pressure sodium discharge lamp range about 2000K. But, because of discharge nature of the light, the colour temperature says nothing about real heating. The heat source of the highpressure sodium lamp is the gas discharge at the saturated sodium vapour conditions inside the discharge tube (plasma). The special discharge tube has reasonable resistance to thermal shock. The spectrum of the discarge is line-structured. Thereat the specification of the quantity of generated heat cannot go out of radiation theory of the black body or the POSTERUS.sk - 1 / 6 -

2 luminous efficacy. We need to use the energy ballance of the lamp, as specified e.g. in [6]. Based on these characteristics (Fig. 1) it is possible to evaluate that the heat generated by plasma and discharge tube wiring is about 70% of input power. The heat is taken out in form of IR radiation (about 55%) and also by conduction and convection out of the bulb (about 15%). Fig. 1 Energy ballance of the 400W high-pressure sodium lamp [6] 1. Power in discharge column: 376W, 2. Thermal losses at electrodes 24W, 3. Visible radiation 118W, 4. UV radiation from discharge 2W, 5. IR radiation from discharge 80W, 6. Thermal losses in discharge column 176W, 7. UV radiation 1W, 8. IR radiation 1W, 9. Total IR radiation 221W, 10.Convection and conduction 60W. 3. Analytical heating calculation We can simply express the basic temperatures analytically. To be able to arrange the equivalent thermal scheme, we have to take a look at the architecture of the lamp and eventually apply some simplifications. We need to build an alytical model, which may not to be too complex. It is appropriate to use the system of coaxial cylinders as a model. The cylinders have an infinite length and a cross-section of them represents the cutting of the lamp locally in place of the discharge tube. In this model the inner cylinder represents the discharge tube, the outer cylinder represents the glass bulb of the lamp. Between the faces there is a vacuum. According to this model it is possible to arrange equivalent thermal diagram (Fig. 2). The values t 1, t 2 and t 0 [ C] represent temperatures of the discharge tube, outer bulb and ambient space. The heat generated by discharge tube is represented as heat flux P [W]. Fig. 2 Equivalent thermal diagram of the sodium discharge lamp The heat is transferred through several paths: Radiation between the discharge tube and the bulb, in equivalent thermal diagram POSTERUS.sk - 2 / 6 -

3 represented by resistance R 1R. Radiation of the bulb to ambient, represented by resistance R 2R. Convection around the bulb, represented by resistance R 2K. Radiation from the discharge tube (and related wiring) to ambient, which passes through the glass bulb, represented by resistance R 0R. Conduction from the discharge tube throught the wiring and supports, represented by resistance R 1C. We assume that there is no heat transfer following the axial direction. In general, we can evaluate particular resistances according to [1],[ 4]: Convection resistance between body and ambient: (1) where: L characteristic dimension, Nu Nusselt s number, &latex \lambda& ambient heat convection coefficient, A surface of the body Radiation resistance between two bodies or between body and space: (2) where: R R radiation resistance, surface emissivity or equivalent emissivity, C O emissivity of the black body surface, t s surface temperature, ambient temperature or second body temperature. The equivalent thermal diagram is solvable as an electrical circuit, considering the equivalency of the temperature and electric fields [4],[5]. The solution consist of solving the non-linear system of equations where the unknown quantities are the temperatures. Mostly it is necessary to use the computer system to evaluate the results. Temperatures of this solution were evaluated by using software Mathematica [7]. The load conditions, initial values and equations were entered in the way the system required and the iterative non-linear solution using the Newton iteration method was ran. Ambient temperature was set to 20 C. The results are shown in Tab. 1. 4. Numerical analysis Tab. 1: Results of the analytical calculation of the lamp heating input power discharge tube temperature outer bulb temperature 70W t 1 = 967 [ C] t 2 = 214 [ C] convection film coefficient = 10.2 [W/m 2 K] heat flux P 0 heat flux P 1 P 0 = 947.5 [W/m] P 1 = 652.5 [W/m] ratio of heat flux P 0 to overall heat flux P P 0 /P = 34.7 % POSTERUS.sk - 3 / 6 -

4 Following the specification of the heat source and analytical calculations it is possible to evaluate the temperature rise by the finite element method (FEM, ref. [3]). The convection film coefficiet as the input of numerical analysis has been obtained as a result of analytical calculation of thermomechanical model in previous chapter. The 70W sodium discharge lamp has been modelled as 3D object (Fig. 3) with a couple of simplifications using computer system SolidEdge. The geometry has been transferred to FEM system ANSYS [8]. Fig.3 simplified 3D model of the lamp The material proberties have been assigned to each of the parts. Next, the model has been divided into number of finite elements (mesh). Then boundary conditions and loads have been applied, reflecting the conditions of the analytical model. The model includes all types of heat transfer convection, conduction and radiation. The final temperatures of the 70W sodium discharge lamp (Fig. 4, 5) were obtained by non-linear iterative solution. Fig. 5 Heating of the interior of the lamp, 70W lamp POSTERUS.sk - 4 / 6 -

5 The average temperature of the outer bulb range about 120 C. The temperatures of the sides of the bulb stand between 50 and 90 C and the maximum temperature of the bulb near the discharge tube is about 180 C. Temperature field of interior of the lamp (Fig. 5) shows the thermal stress of the consequent parts. 5. Experiment measurement of the temperatures The heating of the 70W sodium discharge lamp was measured by linear series of thermocouples attached to outer surface. The results were evaluated as heating profiles (Fig. 6). The profiles are shown for each radial placement of the measurement points by step of 30 degrees from the top. Fig. 6 Outer heating profiles of the sodium discharge lamp 70W, radial from the top Measurement was performed by the same conditions, as numerical analysis assumed, at steady-state. The lamps were hanged in the air, the ambient temperature was 19 20 C. Temperatures at the signed points of the bulb surface are shown in the figure 5. In collaboration with (and thanks to) company OSRAM Nové Zámky also the temperature field of the 70W high-pressure sodium discharge lamp was measured using thermovision camera. The temperature of the center of outer bulb reached on average 207 C. Maximal heating was at the top of the bulb 214 C. The heating of the discharge tube inside the lamp was evaluated to 800 1000 C. The temperatures were obtained at ambient temperature around 35 C. More detailed measurement description, complex results and discussion will be provided in future articles and papers. 6. Conclusion It can be seen, that our results of numerical and analytical analysis of the surface temperature approximately correspond to the measured values. The differences of numerical solution appear most by the temperatures of the outer glass bulb. This can be caused by the fact, that we assumed some simplifications not only in geometry but also by modelling of the radiation. The simplified radiating system had to be used because of complexity and size of the view-factor matrix and also regarding the duration of the solution. The differences in analytical model appeared as well, according to character of the model. In the real lamp the thermal flux flows also in direction of axis, which our model didn t provided. In general we can state, that measuring of surface temperature have confirmed our POSTERUS.sk - 5 / 6 -

6 results of analytical and numerical analysis, especially regarding the heat distribution. The models can be improved in the future. The FEM models can be used in the lamp design process or also in the thermal analysis of the whole luminaire. References 1. Michejev, M.A. Michejeva, I.M: Osnovy teploperedači. Energia, Moskva 1977. 2. Ražnjevič, K.: Tepelné tabuľky a diagramy. ALFA, Bratislava 1969. 3. Rao, S. S.: The Finite Element Method in Engineering. Oxford: Pergamon Press, 1982. 4. Kalousek, M. Hučko, B.: Prenos tepla. Bratislava: Vydavateľstvo STU, 1996 5. Janíček, F. Murín, J. Lelák, J.: Load Conditions and Evaluation of the Rise of Temperature in an Enclosed Conductor. Journal od Electrical Engineering, 52 (7-8), 2001, p. 210-215. 6. Philips Lighting: Lighting manual Fifth Edition. Philips Lighting B.V. Eindhoven 1993. 7. http://www.wolfram.com 8. ANSYS, Theory manual Department of Mechanics, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 812 19 Bratislava 1, Slovak University of Technology in Bratislava POSTERUS.sk - 6 / 6 -