An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric Heating Method in Porous Rocks

Similar documents
An Example file... log.txt

A Study on the Analysis of Measurement Errors of Specific Gravity Meter


Examination paper for TFY4240 Electromagnetic theory

Framework for functional tree simulation applied to 'golden delicious' apple trees

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

Optimal Control of PDEs

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Planning for Reactive Behaviors in Hide and Seek

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

!!"# $% &" ( )

ETIKA V PROFESII PSYCHOLÓGA

Damping Ring Requirements for 3 TeV CLIC

Loop parallelization using compiler analysis

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

Research of Application the Virtual Reality Technology in Chemistry Education

An Introduction to Optimal Control Applied to Disease Models

Vectors. Teaching Learning Point. Ç, where OP. l m n

Klour Q» m i o r L l V I* , tr a d itim i rvpf tr.j UiC lin» tv'ilit* m in 's *** O.hi nf Iiir i * ii, B.lly Q t " '

New method for solving nonlinear sum of ratios problem based on simplicial bisection

Redoing the Foundations of Decision Theory

TELEMATICS LINK LEADS

This document has been prepared by Sunder Kidambi with the blessings of

Matrices and Determinants

Sample Exam 1: Chapters 1, 2, and 3

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

A Functional Quantum Programming Language

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

A Study on Dental Health Awareness of High School Students

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Hyemin Park, Jinju Han, Wonmo Sung*

The New Technique and Application of Pile-cap Treatment on DH-PHC pile

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

R for beginners. 2 The few things to know before st. 8 Index 31

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

4.3 Laplace Transform in Linear System Analysis

Constructive Decision Theory

T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, )

Dimethyl Ether Production using a Reactive Distillation Process

DISSIPATIVE SYSTEMS. Lectures by. Jan C. Willems. K.U. Leuven

/".#2 Q S:, Q C / Q :!"! hp://

F O R SOCI AL WORK RESE ARCH

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following:

Building Products Ltd. G Jf. CIN No. L26922KA199SPLC018990

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

New BaBar Results on Rare Leptonic B Decays


Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments

. ffflffluary 7, 1855.

Oxygen Transfer Characterization in Aeration Tank for Oxidation Treatment of Water Pollutants

6. Convert 5021 centimeters to kilometers. 7. How many seconds are in a leap year? 8. Convert the speed 5.30 m/s to km/h.

Optimizing Stresses for Testing DRAM Cell Defects Using Electrical Simulation

* +(,-/.$0 0,132(45(46 2(47839$:;$<(=

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Fundamentals of Thermodynamics. Chapter 8. Exergy

Correlation Between Resistivity Index, Capillary Pressure and Relative Permeability

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

ISO/IEC JTC1/SC2/WG2 N2

cº " 6 >IJV 5 l i u $

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

OVER 150 J-HOP To Q JCATS S(MJ) BY NOON TUESDAY CO-ED S LEAGUE HOLDS MEETING

A Theory of Universal AI

The Effect of Reaction Conditions on Particle Size and Size Distribution in the Synthesis of SiO 2 Nanoparticles from W/O Microemulsion Method

SCOTT PLUMMER ASHTON ANTONETTI

Synchronizing Automata Preserving a Chain of Partial Orders

Stochastic invariances and Lamperti transformations for Stochastic Processes

JEE(Advanced) 2015 TEST PAPER WITH ANSWER. (HELD ON SUNDAY 24 th MAY, 2015) PART - III : MATHEMATICS

ADVANCES IN MATHEMATICS(CHINA)

Port Vintage. Foundry: Onrepeat Types Website: Designer: João Oliveira INTRO PORT VINTAGE REGULAR

Winsome Winsome W Wins e ins e WUin ser some s Guide

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Optimization of a parallel 3d-FFT with non-blocking collective operations

MARKET AREA UPDATE Report as of: 1Q 2Q 3Q 4Q

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Towards a numerical solution of the "1/2 vs. 3/2" puzzle

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

SOLAR MORTEC INDUSTRIES.

PROPERTIES OF FLUIDS

CHAPTER 5 ESTABLISHING THEORETICAL / TARGET VALUES FOR DENSITY & MOISTURE CONTENT

Which statement is true about parallelogram FGHJ and parallelogram F ''G''H''J ''?

Electrical and geomechanical Properties of Natural Gas Hydratebearing Sediments from Ulleung Basin, East Sea, Korea

DEVELOPMENT SITES FOR SALE

Stability analysis of a whirling disk-spindle system supported by FDBs with rotating grooves

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

A L A BA M A L A W R E V IE W

Transcription:

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004, pp. 115-120 Electric Heating * 133-791 17 * 431-711 1588-14 (2003 10 14! "#, 2003 12 20! $%) An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric Heating Method in Porous Rocks Wonmo Sung, Hoseob Lee and Hojoon Yang* Department of Geoenvironmental System Eng., Hanyang University, 17, Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea *Technical Department Korea National Oil Company, 1588-14, Gwanyang-dong, Dongan-gu, Anyang, Gyonggi-do 431-711, Korea (Received 14 October 2003; accepted 20 December 2003) electric heating! "# $ % &'( )* +,-./&' 012 3 4 56789 :;<, 9 = > 56 3?;. => 56 @ => )* A %, +,-./&' B./C DEF G H IJ;. 56 K(, => +,-./&' LMN =>C +,-./O P QRS./C DEF G T. U5V W 3 4X. => )* DE Y9 IJZ K(, => [3\ T]./9 ^_ LM` ab H c' d ex. fz g=>h ab Hh ijk =>C l 8. DE i mq no pqhh rh d kst. uv, w Z./56 wx )S ab DE lp yz {D O }~ DE i'h Z d kst. Abstract In this study, an experimental apparatus has been designed and set-up to analyze the dissociating phenomena of hydrate in porous rock using electric heating method supplied at downhole. The electric heat injecting experiments have been performed to investigate the heat transfer within the core, the dissociating phenomena of hydrate, and the productivities of dissociated gas and water. These experiments were under constant heat injecting method as well as preheating methods. From the experimental results, it is seen that dissociation of hydrate is accelerated with heat. The injected heat is consumed for the dissociation and also it is lost together with outflow of the dissociated gas and water. From the investigation of gas producing behavior for various heat injecting methods, as the injected heat is greater, dissociation is accelerated faster at outlet and hence the initial gas production becomes higher. Also, it is shown that the initial gas productivity under the constant heating method is better, however, the heat is low because of smaller amount of the produced gas comparing to the amount of heat injected. In the experiments of preheating method, it was seen that gas production only initial stage is different with the preheating time, but the producing behaviors of gas production are similar. Key words: Hydrate, Formation and Dissociation Experiment, Electric Heating, Gas Production Behavior 1.. McGuire[1], Bayles [2], Kamath Godbole[3], To whom correspondence should be addressed. E-mail: wmsung@hanyang.ac.kr Selim [4]!" #$%& Verigin [5]' Yousif [6, 7]!" ()*' +,-./ 01 ()2 3456 7 8 95: ' 89;<2 345:= >? @AB' + 4CD $% [8, 9]. ()* #$%' E9 F G H IJ KL M N O PQ R S9 89T UV. W9X 4CD $% 115

116 89 YZ5[ R \] ^=G / _ `'1 Q? $%a 4CD,-. bg c d' _X 4CD / e fg O PQ dhi jkz U V. lm7 ()*' #$%2 no pqr #$% Q? 89 YZ5:X ()*G /8 89a \]s \]i2 tu5[. vwpq MxyG7 z { Tk #$% # } ~=$%R $ & 8,G ƒ s $3.& \] G7/ # ˆ \ UV. lm7 # ˆ2 Š = >? \] G =G /" # \ NŒ Œ Ž d'p. G7 =P #$%(electric heating) 2 " x,- G7 89 u } 89a / 5 y u2 ˆ Nf š, " #$% 89y ˆ 2 qn 7 #$%G lœ 89 u } \]dh2 žxÿ š. 2. / #$% ˆ NŒ 5 / bpq 1 Fig. 1G &. ˆ Nf M N PQ Q k (Fig. 2),-./ 01 ();<2 1 *" x/ ª«(sus 316) T. k/ y% } y end plugg /8, r *4a x/ X sleeveg /8 X a.?=7 sleeve ± (G /8 kg ²³Tk $%a yb k R yt1 ". ±( yb =, G µt2 Œ K1 i * " 1 95%/ kerosene { T. Fig. 2G & ¹ º +»i? ¼½P ¾U 7 =, 2 À 1 k Á t2 lm LÂ> ÃT 3 / Ä ŒT X, #$%G lœ k / 01 À 1 RTD Å7 Ä k M 2.5 cm ¼e >ŒX Fig. 1. Schematic diagram of total system. Fig. 2. Schematic diagram of coreholder. 42 1 2004 2. Æ" k ÇU/ 01 À = >? end plugg RTD Å7 N³š, y G7 =P #2 \5:= >? È 4 É%š. È/ $%#Ê } 01 45 VG7 220 VË 345[ 3(=G /8 ; a. ˆ G7 { a k /»i 1 fìp `'1 X Íx" ; Z Berea { 2 { š, Î 15.4 cm, ÏO 3.76 cm/ = X ÐÑ 24%, `'1 248.6 md.» i } 89'!G k ;G ÒÓ,0 0 Ô=G / 8 01 ka. ˆ G7 { a»i Air Products{/ 1 99.995%/ X 1 @A,. 1.5 wt%/ Õ4&Ö 2 { š. (), 01, =, ˆ '! À T Ø ŸÙ ŸÙÚÛ 5 G /8 ˆ5¼ À Tk,Na. ŸÙÚ Û 5 G À T ˆ ŸÙG 8 Ü ' 2 ˆ5š, () / OÝ Š Þª¼e 2 psiq 5 {? Ü š. ( )Ü G { a 5 01µtG 8 Ü Tk 0.25% / ß1 à. 01 áâ ã0.01 KQ ASTM X ² 0 1ä š, yêg 87 1,000 ml/revolution/ Ê G Š Þª¼e 10 ml/ wet gas meter š. =, 2-10 kω / e, UŸ å8 Ü š. 3. 3-1. #$%G /" 89 u2 ž= >8, æ, kg»i5: ˆ 2 ç' + qš. k G k èx v " ±(2 8é ê Z ëì {? = ' + í 2 î". kg 1.5 wt%/ Õ4&Ö ' @A Ô5ï ð Ä41 ñ. ˆ G7 ^= Ä41 0.71? ˆ 2 qš. ò»()ü ó È () @A $%n ô»i2 YZ5:X, ä«a $% G1 ()34 u õ r»i' öùa. ˆ 0 u G7 ˆ qt s ()34 MJ" žÿù. ( )34 øùür,»i5g eÿ!g 1/180/ ú Äû T= üýg P;< G7 () * T 89þ ü w ()/ uÿ u & ¹. Æ &/ ŸÙ =, / 3 4., ç' f" f1i x= üýg 1i Õ4&Ö Ä4Tk Ð G»iTr u P =, L a. u=/ ˆ ' 2 å8 Àa () } =, / 34 Fig. 3G & ¹ º +. Fig. 32 øùür G7 " º +»i G lm $%()Q 5.3 MPaG7 () 2.76 MPa *? ò»u G 1En2, =, 5 ŠX 17.7 kωë uÿn2.»iˆ öùtx &r / ½Y2 ~ 5ï7 Ü z Ç/»i5:X " " k bg Ív" Ä ñ= >8 annealing ' 2 ˆ5š. '»ia 895:= >8 01 279.16 KË uÿ5 ê ˆ ; <Q 273.76 K _ 7 5»i5: ' 2 2 ˆ5š. Ÿu / 1 Ý á =¼G =ê34 G /" annealing ' 2 îx s, " ' ˆ N;<2 wµ / 1 X (Yousif, 1991). 3-2. G7 =P #$%G /" 8

117 Fig. 3. Pressure and resistance behaviors during hydrate formation. 9 u } 89a / y u' \] dhi2 ž= > " ˆ 2 qš. #$% y $3/ 895ï ^= \]i2 tu5:= >" #(preheating)' «PQ #$% Q? 89 YZ5:X y1 tu d' ;{= >" «#$%(continuous heating)2 qš. # 8.8 W/ #2 10, 20, 40! $%" ê y / #k a 89() 2.4 MPa yˆ 2 qš, «#$ % 8.8 W/ #2 $%n' 5G y / #k 89y ˆ 2 qš. Æ" #$%G /" d' Ü ŸÈ fì, ž = >? #$% õ áï (G /" 89ˆ 1 qš. æ, (' #$%G /" 89y ˆ ' G7 À a ()', Ä Fig. 4-6G &. WG7 º + (G /" ˆ 5 y%/ () y / () ' vœ 9 5¼, t(fig. 4) #$%(Fig. 5, 6)G f8 áâ 2. y%/ () `'1 248.6 md Fig. 5. Pressure and resistance behaviors during hydrate dissociation under continuous heating method. Fig. 4. Pressure and resistance behaviors during hydrate dissociation under only depressurization method without injecting heat. Fig. 6. Pressure and resistance behaviors during hydrate dissociation under preheating for 10 min. kg1 í X y / ()34G w! & & K Ž Ð G»ia yby å " 2? ˆxP k/ `'1 _ u = üý. lm7 y%/ () y / ()' î/ y{" î2 & r #È 89a Ž ¾U s u= $' #$% ()*Ü 89 %9 Zq 2. Æ" «#$%' #2 fì8ür, «#$% # G f8 Ü &œ 5¼G y () y%/ ()G '½n2. «#$%/ y% ()34 (' #G /" ()34 E9 eè KX «PQ #$%G /8 7 7È n2. Fig. 4-6G7, 34 øùür,, ( ^=Ü Ž2 89T = üý. #$%G /" 0134 Çu2 ž= >? y / # KX(²)5 ) v #Ê2 ä«$%? À a k/ òí0 Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004

118 q" OÝG 294.1 K 3 K 1 â 1. #$% y 1 \]a / \]G /" «PQ # ˆ \= üý. #$%G /" 89a / \]i2 ž= >? «#$%RG /" 10, 20, 40! #" ê ( ˆ, #$%õ (RG /" 89y ˆ 2 qš,?=7 À a \]Ê2 Fig. 8-12G 15š. (G /" \]Ê 3423Q Fig. 8 øùür, \]^= 45 Ë k/ Ð2 "L yt 4 89 G lm `'i 5X ü 89a y 2. «#$%G /" \]Ê 3423 Q Fig. 9 øùür, #$% Q8 89 Y ZTk \]^= ytx «PQ #$% Q? 89 / yi2 tu5ï \] 5 ê 200 Ë œ 2 G f8 \]Ê 62. #2 10, 20 Fig. 7. The comparison of the core temperatures between the closed system and continuous heating system. 1 «#$%G /" 89yˆ M À a k / òí01 Fig. 7G &. k / òí01 À = >? #$%G7 5.1 cm 10.3 cm jkz V(Fig. 2/ 2, 3 * RTD Å7)G7 À a 01 ]+òíš. Fig. 7G & ¹ º + ^=G ²)5 ' «#$% ˆ, OÝ, #$ % Q? 01 eè uÿn2. ê 89y ˆ 2 q" «#$%/ OÝ $%a # \]a G / 8 Ts7 ²)5 G f8 k/ òí01 77È ~ +L-2..È \]^=G 89G a #' 89 X #' no eè &/& Q8 ^= 01Ü š 5 ~ Çu & 02 ß Q. Æ" #$% Q? #$% ò»u G 1E 01 ²)5 / OÝG 297.1 KQ w8 89y ˆ 2 Fig. 9. Gas production continuous heating method. Fig. 8. Gas production under depressureization method. 42 1 2004 2 Fig. 10. Gas production under preheating for 40 min.

119 Fig. 11. Gas production under preheating for 20 min. Fig. 13. Comparison of gas recoveries for different heating methods. Fig. 12. Gas production under preheating for 10 min., 40 " ê (G /" 89y ˆ 5 À a \]Ê 3423Q Fig. 10G7 Fig. 12 øùür, {G $% a #G /8 y / 01 uÿ? 89TX ü 89a ˆ ^= \] 2, #5¼ Î ^= \]Ê 62..È 40! #2 " OÝ Q Fig. 10 \]^=G \]Ê 10 ' 20 #" OÝG f8 7 4-98& X \] 5 ê 200 &r7 \] î/ #Ù 2. #$% Q8 k/ 01 uÿts7 î/ 89Tk vw Ä4a kg7/ yˆ ' y{ " Çu2 & 92. \]Ê/ 232 fì? & : Fig. 132 øùür, 40! #" OÝ ^=G N z Ç/ \]TX Šö;P\]Ê N & 1. { </ kg7 ˆ qtk & ¹ =v d'7 G7 " º + 89y ˆ G $%a #G /8 k/ b01 Fig. 14. Comparison of water recoveries for different heating methods. uÿ? 89T = üý. «#$%G /8 À a \]Ê2 øùür, ^= \]Ê R Šö;P \]Ê ç2. $%a #ÊG f8 \ ]a / Ç L GH dhi _ç2 / ". lm7 «#$% $%a # 89 k/ 01 uÿ5: T=1 R k $3 T # zl dhi jk-2. Æ" #G7 #2 10 ' 20 " OÝ fì8ür # 5¼ âg /8 ^= \]ÊR â >? bpq ;P\]Ê y{" Çu2 & 92. ˆ q G $%a #Ê/ âg /8 y G ƒ / 89 1G lm `'1 Ems ^= \]ÊG7R â >? ê/ y () âg /8 \= üý. no \]a / ;P\]Ê Fig. 14G &. Fig. 14 øùür, «#$% " OÝ # " OÝÜ ^=/ \] Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004

120 Table 1. The comparison of energy efficiencies for different heating methods Heating Method 100 min 500 min 1,000 min Output (kj) Energy efficiency Output (kj) Energy efficiency Output (kj) Energy efficiency Continuous heating 25.71 0.49 52.39 0.20 52.39 0.10 Preheating for 10 min 9.78 1.85 46.69 8.84 59.70 11.31 Preheating for 20 min 16.89 1.60 56.22 5.32 67.81 6.42 Preheating for 40 min 56.82 2.69 68.70 3.25 75.65 3.58 No heating 9.21 48.38 53.01 Ê @ Ž2, «PQ #$% Q" 01uÿ / Vi1? y1 tut = üý. Æ", # " OÝ fì8ür 40! #" OÝ #! 89Tk \? \]^=G / \]Ê 62. G7 =P #$%2 ",- G7 / #E u' G lœ 89 u2 ˆ Nf Ͻ ä }?»i' =P #$ %G /" 89ˆ 2 q? ç' + $A2 ñ2. (1) #$%G /" 89y ˆ G7 À a ()3 4 232 ž" $', #$%2 " OÝ y%/ ()' y / ( ) +L 9 5¼ $%a # z OÝv Ž & 1. kg ƒ 89T P J 2 / Ž #$%G /8 89 YZ 2. (2) #$%G /" 0134 ž" $', «#$%G /" 8 9y 5 89G /" #?R LBm y T G /8 $%a # ˆT Ž2, \]^=G $%a # $ 89G Tk k/ 01 T Ž À T. (3) #$%G lœ \]i2 ž" $', #2 $%ng lm ^=/ \]Ê ~T,.È ^=G $%a #Ê C y D/ 89 YZ5ï7 ^=/ \]i ~ 2. ;P\]Ê2 fì" $', «#$% ^= \ ]i ÇER $%a #ÊG f8 \]T / Ç L G H dhi _ç2 $%a # k $3 T Ç z= üý. (4) #G /" 89ˆ 5, #5¼G lm \]Ê ^= GR â >? bpq \]î y{" Çu2 & 92. #G /8 y G7 89T 1G lm ^=/ \]GR â >? ê/ y () âg /87R \T= üý. (5) #$%G /" 89y ˆ G7 \]a / Ç «#$ %G /" OÝ N z \]a Ž & 1, «PQ #$% Q? / 01 uÿ G lm / y1 ~ š= üý. Fý 2001G1 "HC+ZI U/ ðg /? T J B(KRF-2001-041-E00507). 1. McGuire, P. L., Recovery of Gas from Hydrate Deposits using Conventional Technology, paper SPE/DOE 10832 presented at the Unconventional Gas Recovery Symposium, Pittsburgh, PA, May, 373-387 (1982). 2. Bayles, G. A., Sawyer, W. K., Anada, H. R., Reddy, S. and Malone, R. D., A Steam Cyclic Model for Gas Production from a Hydrate Reservoir, Chem. Eng. Comm., 47(2), 225-245(1986). 3. Kamath, V. A. and Godbole, S. P., Evaluation of Hot Brine Stimulation Technique for Gas Production From Natural Gas Hydrates, JPT, 39(11), 1379-1388(1987). 4. Selim, M. S. and Sloan, E. D., 1990, Hydrate Dissociation in Sediment, SPERE, May, 245-251(1990). 5. Verigin, N. N., Khabibullin, I. L. and Khalikov, G. V., Linear Problem of the Dissociation of the Hydrates of Gas in a Porous Medium, Izvest. Akad. Nauk. SSR, Mekhanika Zhidkosti Gaza, 1. 174-177(1980). 6. Yousif, M. H., Li, P. M., Selim, M. S. and Sloan, E. D., Depressurization of Natural Gas Hydrate in Berea Sandstone Cores, J. Inclusion Phenomena & Molecular Recognition Chem., 8, 71-88(1990). 7. Yousif, M. H., Abass, H., Selim, M. S. and Sloan, E. D., Experimental and Theoretical Investigation of Methane-Gas-Hydrate Dissociation in Porous Media, SPERE, Feb., 69-76(1991). 8. Sung, W. M., Lee H. S., Kim, S. J. and Kang, H., Experimental Investigation of Production behaviors of Methane Hydrate Saturated in Porous Rock, Energy Sources, 25(8), 845-856(2003). 9. Seo, Y. T., Kang, S. P. and Lee, H., Experimental Determination and Thermodynamic Modeling of Methane and Nitrogen Hydrates in the Presence of THF, Propylene Oxide, 1,4-Dioxane and Acetone, Fluid Phase Equilibria, 189(1-2), 99-110(2001). 42 1 2004 2