Do WIMPs Rule? The LUX & LZ Experiments and the Search for Cosmic Dark Matter

Similar documents
Down-to-earth searches for cosmological dark matter

The XENON1T experiment

Status of DM Direct Detection. Ranny Budnik Weizmann Institute of Science

The LZ Experiment Tom Shutt SLAC. SURF South Dakota

Sensitivity and Backgrounds of the LUX Dark Matter Search

The Search for Dark Matter with the XENON Experiment

The Direct Search for Dark Matter

Direct Dark Matter Search with Noble Liquids

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

LZ and Direct Dark Matter Detection

LZ and Direct Dark Matter Detection. Kimberly J. Palladino May 1, 2018

Current status of LUX Dark Matter Experiment

Direct dark matter search using liquid noble gases

LUX-ZEPLIN (LZ) Status. Attila Dobi Lawrence Berkeley National Laboratory June 10, 2015 WIN Heidelberg

After LUX: The LZ Program. David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011

Direct Search for Dark Matter

A survey of recent dark matter direct detection results

LARGE UNDERGROUND XENON

Axion search with Dark Matter detector

Direct Detection of Dark Matter with LUX

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London

XENONNT AND BEYOND. Hardy Simgen. WIN 2015 MPIK Heidelberg. Max-Planck-Institut für Kernphysik Heidelberg

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

Low Energy Particles in Noble Liquids

Direct Detection: Liquid Nobles

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

Prospects for WIMP Dark Matter Direct Searches with XENON1T and DARWIN

The XENON1T Experiment

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration

Dark Matter, Low-Background Physics

Enectalí Figueroa-Feliciano

Status of Dark Matter Detection Experiments

Recent results from the second CDMSlite run and overview of SuperCDMS SNOLAB project

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

Direct Dark Matter Searches

LUX. Some thoughts on large detectors. Comments on Xe microphysics. Tom Shutt Case Western Reserve University

Darkside-50, DarkSide-20k and the Global Collaboration to reach the Neutrino Floor with liquid argon

Background and sensitivity predictions for XENON1T

Status of the XENON100 Dark Matter Search

Dark Matter Searches. Marijke Haffke University of Zürich

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction

SuperCDMS: Recent Results for low-mass WIMPS

Direct dark matter search using liquid noble gases

New Physics Results from DarkSide-50. Masayuki Wada Princeton University on behalf of the DarkSide-50 Collaboration Feb

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination

Direct Search for Dark Matter

Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS

Dark Matter Search * in China

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

Introduction to Class and Dark Matter

Dark Matter Detection with XENON100 Accomplishments, Challenges and the Future

DarkSide new results and prospects

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

The Search for Dark Matter, and Xenon1TP

Recent results from PandaX- II and status of PandaX-4T

Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors

Composite Dark Matter

Search for Weakly Interacting Massive Particles with CDMS and XENON

XMASS: a large single-phase liquid-xenon detector

Darkside and the future Liquid Argon Dark Matter program

Rare Event Searches and the Underground

BubXe: a liquid xenon bubble chamber for Dark Matter detection!

Precision Measurement Of Nuclear Recoil Ionization Yields For Low Mass Wimp Searches

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment

Measurements of liquid xenon s response to low-energy particle interactions

Dark Matter. and TPC Technologies

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia)

CDMS and SuperCDMS. SLAC Summer Institute - CDMS. August 2, 2007 Blas Cabrera Co-Spokesperson CDMS & Spokesperson SuperCDMS

Direct detection: results from liquid noble-gas experiments

Dark Matter Search with XENON

Searches for Low-Mass WIMPs with CDMS II and SuperCDMS

Direct Dark Matter Searches. General Overview LUX-ZEPLIN Hans Kraus, Oxford

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon

Direct Detection Lecture 2: Current Results

The next generation dark matter hunter: XENON1T status and perspective

COUPP: Bubble Chambers for Dark Matter Detection

Dark Matter from the Lattice

WIMP Dark Matter Search with XENON and DARWIN

Direkte Suche nach Dark Matter

DarkSide-20k and the future Liquid Argon Dark Matter program. Giuliana Fiorillo Università degli Studi di Napoli Federico II & INFN Napoli

Distillation purification and radon assay of liquid xenon

DARK MATTER SEARCH AT BOULBY MINE

arxiv:astro-ph/ v1 15 Feb 2005

Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014

The LUX Dark Matter Search Objectives and Status

Overview of Direct Detection Dark Matter Experiments

Backgrounds and Sensitivity Expectations for XENON100

Searching for Dark Matter From XENON10 to LUX. Luiz de Viveiros

HIGGS-PORTAL DARK MATTER AT THE LHC

Direct Search for Dark Matter

Backgrounds in PICO. Eric Vázquez Jáuregui SNOLAB. AARM Meeting Fermilab; Batavia IL, USA; March 19, 2014

Dark Matter and the XENON Experiment

Detectors for astroparticle physics

WIMP Direct Detection: an outlook

Transcription:

Do WIMPs Rule? The LUX & LZ Experiments and the Search for Cosmic Dark Matter!" Dan Akerib! SLAC National Accelerator Laboratory Kavli Insitute for Particle Astrophysics & Cosmology

Standard cosmology: An inventory of the universe SDSS-III / BOSS from Perlmutter, Phys. Today (units of critical density) supernovae Energy density Baryon acoustic oscillations Matter density 3 Kelvin cosmic microwave background WMAP WMAP Tytler & Burles

WIMP Hypothesis Early Universe as Particle Factory Not enough protons and neutrons produced in the Big Bang Convert energy to mass E=mc 2 quark WIMP distance anti-quark anti-wimp A new type of particle: WIMPs = weakly interacting massive particles Massive: source of gravity Weakly-interacting: not star forming time

cross section annihilation rate

cross section annihilation rate

WIMP freezeout WIMP pairs produced in equilibrium Annihilation stops when number density falls too low H > Γ A ~ n χ σ A v Production = Annihilation (T m χ ) Production suppressed (T<m χ ) Freeze out annihilation rate slower than Hubble expansion ( freeze out ) mean free time > age For Ω χ 1 M 10-1000 GeV σ A electroweak SUSY/LSP? Comoving Number Density ~exp(-m/t) Jungman, Greist, Kamionkowski 1996 1 10 100 1000 m χ / T (time )

Dark Matter in Galactic Halos data with dark halo if only stars and gas Vera Rubin and Kent Ford, 1978

Scattering experiment WIMP 10 16 WIMPs/year density, speed dark matter halo 10-16 light years 1 light year Cross section: WIMP scatters once in a light year of lead detector Rate ~ few events / year

WIMP search - c.1988: converted neutrino detector Germanium ionization detector at the Oroville Dam, CA searching for double beta decay - progenitor to Majorana Event rate ruled out heavy neutrinos as DM Recoil energy transfer to nucleus from Jungman et al. (D.O. Caldwell et al.)

WIMP search - c.1988: converted neutrino detector Germanium ionization detector at the Oroville Dam, CA searching for double beta decay - progenitor to Majorana Event rate log cross section (arb. units) 070802080001 http://dmtools.brown.edu/ Gaitskell,Mandic,Filippini 0 1 10 2 10 3 WIMP Mass [GeV] Recoil energy transfer to nucleus from Jungman et al. (D.O. Caldwell et al.)

Energy deposition WIMP 10% energy Ionization Phonons/heat 100% energy slowest cryogenics Light 1% energy fastest no surface effects

An active field with many approaches! WIMP CoGent (HPGe) DMTPC (gas dir.) DRIFT (gas dir.) 2-phase nobles: ZEPLIN, XENON, WARP, LUX/LZ, ArDM, Darkside 10% energy Ionization Semiconducting calorimeters: CDMS, Edelweiss Superheated liquids: Picasso, Simple, Coupp, PICO Phonons/heat 100% energy slowest Inorganic scintillators: DAMA/LIBRA, KIMS Single-phase liquid nobles: DEAP, MiniCLEAN, XMASS Light 1% energy fastest CRESST II low radioactivity background immunity large mass / stable operation shielded low energy threshold

Water, 2.6 MeV gammas Shielding Gamma Rays Water 1 m water shielding Liquid Xe, 2.6 MeV gammas Liquid Xenon 1 m liquid Xe

The Large Underground Xenon Detector 250 kg active LXe @ 170 K S1, S2 event energy S2 event xy location S1-S2 timing z location S2/S1 recoil type z y x

Inside the LUX/LZ water tank Sanford Underground Research Facility 4850-foot deep Davis Cavern Homestake Gold Mine Lead, SD The LUX Experiment photo credits: Matt Kapust, SURF

Former Homestake Gold Mine Sanford Underground Research Facility

Backgrounds: neutrons cosmic ray muons Gammas in Water muons down by 10,000,000x neutron scatter nuclear disintegration neutron moderated by water shield photo credit: Matt Kapust, Sanford Lab

1964 Nov 2011 2009

Internal dangers: radioactive 85 Kr 10-y T 1/2 beta decay Can t self-shield Noble gas: non-reactive ~130 ppb in purchased Xe LUX background floor from 122 PMTs ~ 20 ppt Kr/Xe ν e - 85 Kr 85 Rb + e - + ν e - Kr Xe Chromatography He gamma ray

Gas charcoal chromatography Kr removal Kr Xe He

400 kg Xe at Case: 130 ppb to 4 ppt thermosyphon dewar traps thermosyphon lines (3) charcoal column condenser gas panel gas control panel Xe recovery pumps sampling RGA graduate student Chang Lee feed & recovery bottles arxi C. Hall, UMD: Assay with ppt sensitivity

50 kg / week processed for LUX Xe partial pressure Xe feed (mass) (arb units) 45 kg 4 days

Raw signals in LUX Depth from timing difference z y x Lateral location from top PMT Array

Signal production in liquid Xe e - E ~ kev Xe Xe + Ion Xe2 + Ionized molecule e - e - e - S2 Recombination Xe Xe Heat Xe Xe* Excitation Xe2* VUV photon, 175nm S1 Electron Recoils

Signal production in liquid Xe Xe E ~ kev Xe Xe + Ion Xe2 + Ionized molecule e - e - e - S2 Recombination Xe Xe Heat Xe Xe* Excitation Xe2* VUV photon, 175nm S1 Nuclear Recoils

Understanding light and charge Electric Field Electron recoils Nuclear recoils Puzzling low energy behavior Comprehensive model, only 2 fit parameters (Dahl, PhD thesis, 2009) Robust Monte Carlo framework: NEST (M. Szydagis et al., JINST 6, p10002 (2011))

Background and Signal Distinction Background in situ LUX calibrations More charge, less light Signal τ Internal tritium source (purified away with ~ 7 hours)

WIMP signal Signal region: a quiet place where low-energy singlescatter nuclear recoils away from the walls can emerge from among: external gamma rays into the fiducial volume wall events (206Pb) dissolved backgrounds (Rn-progeny, 85Kr, 127Xe) delayed electrons from previous large S2 s amplitude (phe/10 ns) S1 summed across all channels 0.6 0.5 0.4 0.3 ALPHA POPULATIONS IN XY amplitude (phe/10ns) 1.5 1 0.5 0.2 100 0 0.1 50 0 50 100 150 0 200 PMT channel ALPHA POPULATIONS IN number R 2 0 0.2 0 0.2 0.4 Z time (µs) time (µs) 150 83m Kr injection movie 550 sec 83m Kr injection movie 550 sec

0.6 Event selection S1 summed across all channels S2 summed across all channels 0.5 8 amplitude (phe/10 ns) 0.4 0.3 0.2 0.1 amplitude (phe/10 ns) 6 4 2 amplitude (phe/10ns) 1.5 1 0.5 0 0 0.2 0 0.2 0.4 time (µs) S1 0 179 180 181 182 183 184 time (µs) S1 150 100 50 0 50 100 150 200 time (µs) 0 PMT channel number Requirements for WIMP search candidate events S2 trigger (at least 2 trigger ch. 8 phe within 2 µs) [lower threshold than S1] 2 phe (2-fold coincidence) S1 30 phe [quiet enough to see this in look back ] 200 phe (8 e-) S2 3300 phe [require good xy measurement] total area of other pulses in the event < 100 phe [confusion from previous large S2's]

LUX WIMP Search, 85 live-days, 118 kg calibration 2.6 2.4 1.3 kev ee 1.8 ER Calibration 99.6±0.1% leakage below NR mean, so expect 0.64 +/- 0.16 for 160 events log (S2 /S1) x,y,z corrected 10 b 2.2 2 1.8 1.6 1.4 3.5 4.6 5.9 7.1 1.2 0 3 6 9 12 15 18 21 24 27 30 kevnr 1 0 10 20 30 40 50 S1 x,y,z corrected (phe) gate grid drift time (µs) 50 100 150 200 250 300 wall face wall corner 350 cathode grid 0 100 200 300 400 500 600 radius 2 (cm 2 ) 160 events in ER band / 118 kg fiducial

Extended Likelihood Treatment Observables: x = (S1, log 10 (S2/S1), r, z) Parameter of interest: Nuisance parameters: N s N Compt, N Xe-127, N Rn/Kr-85 Modeled WIMP signal, including resolution and efficiencies 8 GeV /c 2 WIMP 100 GeV /c 2 WIMP 2 TeV /c 2 WIMP

Spin Independent Cross Section Upper Limit WIMP nucleon cross section (cm 2 ) 10 44 10 45 ZEPLIN III Edelweiss II CDMS II Ge XENON100(2011)-100 live days XENON100(2012)-225 live days LUX (2013)-85 live days LUX +/-1σ expected sensitivity 10 1 10 2 m (GeV/c 2 10 3 ) WIMP Phys. Rev. Lett. 112, 091303 (2014)

Spin Independent Cross Section Upper Limit WIMP nucleon cross section (cm 2 ) 10 40 10 41 10 42 10 43 10 44 10 45 10 1 10 2 m WIMP (GeV/c 2 10 3 )

Low Mass WIMPs CDMS II Ge WIMP nucleon cross section (cm 2 ) 10 40 10 41 10 42 10 43 DAMA/LIBRA Favored CoGeNT Favored x CDMS II Si Favored XENON100(2012) 225 live days CRESST Favored 10 44 LUX (2013) -85 live days 5 6 7 8 9 10 12 m WIMP (GeV/c 2 ) w/newest CDMS result

Next for LUX WIMP nucleon cross section (cm 2 ) 10 40 10 41 10 42 10 43 10 44 10 45 10 46 DAMA/LIBRA CoGeNT (2012) CDMS II Si (2013) CRESST II ZEPLIN III XENON100 10 1 10 2 m (GeV/c 2 10 3 ) WIMP CDMS II Ge LUX 85d (2013) Projected LUX 300 day run (2014-15) Updated analysis of 85d - improved reconstruction - lower threshold - wall distribution into PLR? - complete DD calibration - NEST update! 300d run: above + - improved extraction field - 127 Xe decayed away

LZ: LUX + ZEPLIN 20-fold scale-up from LUX Two-component outer detector system 0.75 m thick Gd-loaded LAB scintillator shield (c.f.: Daya Bay) Instrumented Xe skin Effective for neutrons and gammas HV water shield scintillator detector 7 ton LXe TPC fits in Davis Cavern

LZ Reach and Snowmass WIMP nucleon cross section cm 2 10 39 10 40 10 41 10 42 10 43 10 44 7 Be 10 45 Neutrinos 10 46 10 47 10 48 10 49 10 50 SuperCDMS PICO250-C3F8 CDMSlite (2013) SNOLAB NEUTRINO C OHER ENT SCATTERING 8 B Neutrinos (Green&ovals)&Asymmetric&DM&& (Violet&oval)&Magne7c&DM& (Blue&oval)&Extra&dimensions&& (Red&circle)&SUSY&MSSM& &&&&&MSSM:&Pure&Higgsino&& &&&&&MSSM:&A&funnel& &&&&&MSSM:&BinoEstop&coannihila7on& &&&&&MSSM:&BinoEsquark&coannihila7on& & SuperCDMS Soudan Low Threshold XENON 10 S2 (2013) CDMS-II Ge Low Threshold (2011) CoGeNT (2012) CRESST Updated from Snowmass Community Summer Study 2013 CF1: WIMP Dark Matter Detection CDMS Si (2013) DAMA EDELWEISS (2011) DEAP3600 1 10 100 1000 10 4 WIMP Mass GeV c 2 SIMPLE (2012) SuperCDMS Soudan LUX 300-day SuperCDMS SNOLAB NEUTRINO COHERENT SCATTERING Atmospheric and DSNB Neutrinos COUPP (2012) ZEPLIN-III (2012) CDMS II Ge (2009) Xenon100 (2012) LUX (2013) DarkSide 50 PICO250-CF3I Xenon1T DarkSide G2 LZ 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 WIMP nucleon cross section pb 3 year run, limited primarily by (electron recoil) background of pp solar neutrinos limited by nuclear scatter background? reach to 10-49 cm 2 neutrino floor depends on rejecting pp solar

Lab Activities at SLAC Fundamental measurements Test platform for LZ prototyping and long-term R&D 45 cm 80 cm Purification Tower Test TPC in 100 kg LXe @ 170 K LXe vessels w/200 kv feedthrough ports for LZ system test HV feedthrough (drift field) Removal of trace radioactive 85 Kr thermosyphon w/gas dewar charcoal chromatography high-flow pneumatically controlled Xe circulation & purification panel thermosyphon lines (3) charcoal column Xe recovery pumps condenser sampling RGA graduate student gas control panel feed & recovery bottles

Former BaBar IR2 complex Repurposed electronics hut: LZ / liquid nobles test stand LSST Clean Room pump shed Xe storage

LZ / liquid nobles test stand LN thermosyphon and controls Phase I & II system test Re-furbished LUX Kr removal for R&D

Kr removal: reduction to 0.015 ppt ~ 10% pp solar ν 10 tons / 60 days @ 200 kg/day X 2 passes 500 mbar 500 SLPM He (Fluitron compressor) 16 kg 250 SLPM He (dry backing pump) 100 mbar thermosyphon Xe charcoal 500 kg LN cryocooler cooled Kr trap Xe/Kr chromatography filter 10 mbar 250 SLPM He (Roots booster) U sampling RGA 50 SLPM Xe 2 bar 80 bar Xe storage He feed/purge ~ 120 min Xe recovery Xe ~ 120 min condensers 200 kg capacity 24 hour cycle (per condenser) automation of all 3 cycles

Dark matter detection - exciting future Liquid xenon TPCs playing key role 300-day data set for LUX ~ 4-5x LZ approaches neutrino floor Summary WIMP nucleon cross section cm 2 WIMP nucleon cross section (cm 2 ) 10 39 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 40 10 41 10 42 10 43 10 44 10 45 10 46 7 Be Neutrinos PICO250-C3F8 SuperCDMS SNOLAB NEUTRINO C OHER ENT SCATTERING SuperCDMS Soudan CDMS-lite SuperCDMS Soudan Low Threshold XENON 10 S2 (2013) CDMS-II Ge Low Threshold (2011) 8 B Neutrinos (Green&ovals)&Asymmetric&DM&& (Violet&oval)&Magne7c&DM& (Blue&oval)&Extra&dimensions&& (Red&circle)&SUSY&MSSM& &&&&&MSSM:&Pure&Higgsino&& &&&&&MSSM:&A&funnel& &&&&&MSSM:&BinoEstop&coannihila7on& &&&&&MSSM:&BinoEsquark&coannihila7on& & CoGeNT (2012) CRESST CDMS Si (2013) DAMA EDELWEISS (2011) 1 10 100 1000 10 4 WIMP Mass GeV c 2 SIMPLE (2012) NEUTRINO COHERENT SCATTERING Atmospheric and DSNB Neutrinos 10 1 10 2 m WIMP (GeV/c 2 10 3 ) COUPP (2012) ZEPLIN-III (2012) CDMS II Ge (2009) SuperCDMS Soudan Xenon100 (2012) DarkSide 50 LUX Xenon1T DarkSide G2 DEAP3600 PICO250-CF3I LZ 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 WIMP nucleon cross section pb

Thank you 110 researchers from 17 institutions and 3 countries...visit us at luxdarkmatter.org