PLEASE SCROLL DOWN FOR ARTICLE

Similar documents
First principles studies of the Born effective charges and electronic dielectric tensors for the relaxor PMN (PbMg 1/3 Nb 2/3 O 3 )

First principle based phase stability in PMN-xPT. M. Sepliarsky (1) and R. E. Cohen (2)

PLEASE SCROLL DOWN FOR ARTICLE

Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

FB 4, University of Osnabrück, Osnabrück

Brillouin scattering and molecular dynamics study of the elastic properties of Pb(Mg 1/3 Nb 2/3 )O 3

Dissipation Function in Hyperbolic Thermoelasticity

Online publication date: 30 March 2011

Temperature-dependent phase transitions in Pb(Zn1/3Nb2/3)0.93Ti0.07O3 crystal

First-principles calculations of piezoelectricity and polarization rotation in Pb Zr 0.5 Ti 0.5 O 3

T d T C. Rhombohedral Tetragonal Cubic (%) 0.1 (222) Δa/a 292K 0.0 (022) (002) Temperature (K)

Electric Field- and Temperature-Induced Phase Transitions in High-Strain Relaxor- Based Ferroelectric Pb(Mg1 /3Nb2/3)1 - xtixo3 Single Crystals

Micro-Brilouin scattering study of field cooling effects on ferroelectric relaxor PZN-9%PT single crystals

Full terms and conditions of use:

Guangzhou, P.R. China

Intermediate ferroelectric orthorhombic and monoclinic M B phases in [110] electric-field-cooled Pb Mg 1/3 Nb 2/3 O 3 30%PbTiO 3 crystals

University, Tempe, Arizona, USA b Department of Mathematics and Statistics, University of New. Mexico, Albuquerque, New Mexico, USA

Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A.

PLEASE SCROLL DOWN FOR ARTICLE

Erciyes University, Kayseri, Turkey

Poling field versus piezoelectric property for [001] c oriented 91%Pb(Zn 1/3 Nb 2/3 )O 3 9%PbTiO 3 single crystals

Probing local polar structures in PZN-xPT and PMN-xPT relaxor ferroelectrics with neutron and x- ray scattering

OF SCIENCE AND TECHNOLOGY, TAEJON, KOREA

Characterizations of Student's t-distribution via regressions of order statistics George P. Yanev a ; M. Ahsanullah b a

First-principles study of BiScO 3 1Àx - PbTiO 3 x piezoelectric alloys

Full terms and conditions of use:

Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 Noheda, B.; Cox, D.E.; Shirane, G.; Gao, J.; Ye, Z.-G.

Online publication date: 01 March 2010 PLEASE SCROLL DOWN FOR ARTICLE

Communications in Algebra Publication details, including instructions for authors and subscription information:

Precise Large Deviations for Sums of Negatively Dependent Random Variables with Common Long-Tailed Distributions

Testing Goodness-of-Fit for Exponential Distribution Based on Cumulative Residual Entropy

Piezoelectric Response from Rotating Polarization

The Fourier transform of the unit step function B. L. Burrows a ; D. J. Colwell a a

Published online: 05 Oct 2006.

Online publication date: 22 March 2010

Gilles Bourgeois a, Richard A. Cunjak a, Daniel Caissie a & Nassir El-Jabi b a Science Brunch, Department of Fisheries and Oceans, Box

Acyclic, Cyclic and Polycyclic P n

Dynamic origin of the morphotropic phase boundary by Hu Cao et al.

Dresden, Dresden, Germany Published online: 09 Jan 2009.

Ferroelectricity. Phase transition. Material properties. 4/12/2011 Physics 403 Spring

Ankara, Turkey Published online: 20 Sep 2013.

George L. Fischer a, Thomas R. Moore b c & Robert W. Boyd b a Department of Physics and The Institute of Optics,

Ferroelectricity. Phase transition. Material properties

The Homogeneous Markov System (HMS) as an Elastic Medium. The Three-Dimensional Case

Park, Pennsylvania, USA. Full terms and conditions of use:

University of Thessaloniki, Thessaloniki, Greece

CMP Seminar April 3 rd, 2008

Phonon calculations with SCAN

PLEASE SCROLL DOWN FOR ARTICLE

Final Project Report. Constitutive Behavior of Relaxor Single Crystals. Submitted to W. Smith, ONR. August 21, Christopher S.

Comparing the weighted density approximation with the LDA and GGA for ground-state properties of ferroelectric perovskites

Diatom Research Publication details, including instructions for authors and subscription information:

The Monoclinic Phase in PZT: New Light on Morphotropic Phase Boundaries

Nacional de La Pampa, Santa Rosa, La Pampa, Argentina b Instituto de Matemática Aplicada San Luis, Consejo Nacional de Investigaciones Científicas

Soft Modes and Relaxor Ferroelectrics

Aix-Marseille III, Marseille, cedex, France c SPMS, UMR CNRS 8580, Ecole Centrale, Ch tenay-malabry, France

Use and Abuse of Regression

Quantitative analysis of the first-principles effective Hamiltonian approach to ferroelectric perovskites

Cation Ordering and Dielectric Properties of PMN-PSN Relaxors

Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains

Analysis of Leakage Current Mechanisms in BiFeO 3. Thin Films P. Pipinys a ; A. Rimeika a ; V. Lapeika a a

First Principles Theories of Piezoelectric Materials

PLEASE SCROLL DOWN FOR ARTICLE. Full terms and conditions of use:

G. S. Denisov a, G. V. Gusakova b & A. L. Smolyansky b a Institute of Physics, Leningrad State University, Leningrad, B-

Open problems. Christian Berg a a Department of Mathematical Sciences, University of. Copenhagen, Copenhagen, Denmark Published online: 07 Nov 2014.

PLEASE SCROLL DOWN FOR ARTICLE

Bond-Valence Model of Ferroelectric PbTiO 3

Geometrical optics and blackbody radiation Pablo BenÍTez ab ; Roland Winston a ;Juan C. Miñano b a

Derivation of SPDEs for Correlated Random Walk Transport Models in One and Two Dimensions

PLEASE SCROLL DOWN FOR ARTICLE. Full terms and conditions of use:

Anisotropic Hall effect in Al 13 TM 4

Version of record first published: 01 Sep 2006.

The American Statistician Publication details, including instructions for authors and subscription information:

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 14 Feb 2001

Structural Phase Transition and Dielectric Relaxation in Pb(Zn 1/3 Nb 2/3 )O 3 Single Crystals

Electric field induced phase transition and electrocaloric effect in PMN-PT

Dielectric Properties of Two-Stage Sintered PMN-PT Ceramics Prepared by Corundum Route

Discussion on Change-Points: From Sequential Detection to Biology and Back by David Siegmund

Online publication date: 23 June 2010 PLEASE SCROLL DOWN FOR ARTICLE

Electric field-induced phase transitions in (111)-, (110)-, and (100)-oriented Pb(Mg1 3Nb2 3)O3 single crystals

Poland b Laboratoire de Physique, University of Bourgogne, Dijon, France c MOPS-CLOES, University of Metz and Supelec,

arxiv:cond-mat/ v1 10 Jun 1994 K. M. Rabe

Materials 218/UCSB: Phase transitions and polar materials

Tong University, Shanghai , China Published online: 27 May 2014.

I. Introduction. Feiming Bai, Naigang Wang, Jiefang Li, and D. Viehland 1, P.M. Gehring 2, Guangyong Xu and G. Shirane 3. (Received Feb.

Ferroelectric materials contain one or more polar axes along which a spontaneous

2 ( º ) Intensity (a.u.) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution

Ferroelectricity and Antiferroelectricity in Elemental Group-V Monolayer Materials

Duisburg, Germany PLEASE SCROLL DOWN FOR ARTICLE

Sports Technology Publication details, including instructions for authors and subscription information:

Singularities in Landau-Devonshire potentials for Ferroelectrics Phase-Transitions

Pressure as a Probe of the Physics of ABO 3 Relaxor Ferroelectrics

PLEASE SCROLL DOWN FOR ARTICLE

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology

Calculation and Analysis of the Dielectric Functions for BaTiO 3, PbTiO 3, and PbZrO 3

T. Runka a, M. Kozielski a, M. Drozdowski a & L. Szczepańska b a Institute of Physics, Poznan University of

Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO 3 thin films

PLEASE SCROLL DOWN FOR ARTICLE

Atomic Structure of Steps on 180 Ferroelectric Domain Walls in PbTiO 3

First-principles study of stability and vibrational properties of tetragonal PbTiO 3

Transcription:

This article was downloaded by:[cdl Journals Account] [CDL Journals Account] On: 15 May 2007 Access Details: [subscription number 770849124] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Ferroelectrics Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713617887 Advances in First-Principles Studies of Transducer Materials A. Asthagiri ab ; Z. Wu a ; N. Choudhury ac ; R. E. Cohen a a Carnegie Institute of Washington. USA b Chemical Engineering Department, University of Florida. Gainesville, FL. USA c Bhabha Atomic Research Centre. Mumbai. India To cite this Article: Asthagiri, A., Wu, Z., Choudhury, N. and Cohen, R. E., 'Advances in First-Principles Studies of Transducer Materials', Ferroelectrics, 333:1, 69-78 To link to this article: DOI: 10.1080/00150190600695750 URL: http://dx.doi.org/10.1080/00150190600695750 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Taylor and Francis 2007

Ferroelectrics, 333:69 78, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0015-0193 print / 1563-5112 online DOI: 10.1080/00150190600695750 Advances in First-Principles Studies of Transducer Materials A. ASTHAGIRI, 1,2 Z. WU, 1 N. CHOUDHURY, 1,3 AND R. E. COHEN 1, 1 Carnegie Institute of Washington, 20015, USA 2 Chemical Engineering Department, University of Florida Gainesville, FL 32611, USA 3 Bhabha Atomic Research Centre, Mumbai, India We have used first-principles linear response calculations and molecular dynamics to study the relaxor ferroelectric Pb(Mg 1/3 Nb 2/3 )O 3 -xpbtio 3 (PMN-xPT). Firstprinciples calculations for ordered PMN show a low-symmetry monoclinic ground state. Anew set of phase transitions to lower symmetry rhombohedral and monoclinic structures is predicted for PT at high pressures, showing predicted piezoelectric response as high as is seen in the giant coupling relaxor ferroelectrics. We have developed a transferable shell-model potential for PMN-xPT by fitting to first-principles data. The potential qualitatively reproduces the compositional phase diagram for PMN-xPT. A new exchange-correlation potential, which gives excellent predictions for ferroelectric materials, is discussed. Keywords PMN; PbTiO 3 ; first-principles; relaxors; ferroelectrics; molecular dynamics; shell model; exchange; linear response; lattice dynamics I. Introduction Relaxor ferrolectrics, such as Pb(Zn 1/3 Nb 2/3 )O 3 -PbTiO 3 (PZN-PT) and Pb(Mg 1/3 Nb 2/3 )- O 3 -PbTiO 3 (PMN-PT), exhibit superior electromechanical properties [1] and are being developed for the next generation of transducer devices. In addition to their technological usefulness, understanding the fundamental origin of their behavior is a fascinating area of recent research [1 4]. Fu and Cohen showed that the relaxor ferroelectrics obtain their properties from the ease of rotating the polarization direction in an applied electric field [3]. The most useful materials also have a large piezoelectric strain associated with the change in polarization direction. The relaxor endmember PMN has a diffuse phase transition attributed to the existence of polar nanoregions (PNRs), but the exact nature of the PNR is still controversial (see Ref. [5] and references therein). Examining these materials using first-principles methods is not feasible due to the disorder in the B-site. We are developing a multi-scale model for PbMg 1/3 Nb 2/3 O 3 -xpbtio 3 (PMN-xPT) by fitting a shell model potential to first principles calculations of PT and ordered PMN structures. Paper originally presented at IMF-11, Iguassu Falls, Brazil, September 5 9, 2005; received for publication January 26, 2006. Corresponding author. E-mail: cohen@gl.ciw.edu 69

70 A. Asthagiri et al. The rest of the paper is organized as follows. Section II discusses our linear response studies of ordered PMN and PbTiO 3.InSection III we present our shell model potential for PMN-xPT and report on MD simulations of PT, PMN, and PMN-xPT. Finally we discuss a new, more accurate GGA exchange-correlation functional for ferroelectric materials in Section IV. II. Linear Response and Total Energies A. PMN Results We have performed a large number of total energy and linear response computations of ordered 15-atom PMN supercells with 1:2 (Mg:Nb) chemical ordering along the (111) (labeled PMN 111 MNN ) and (001) (PMN 001 MNN ) planes [6]. The ordering along (111) is lower in energy than the ordering along (001). We have identified FE and AFE structures for PMN 111 MNN with polarization along [111], but these structures have unstable modes. We find a series of cascading instabilities leading to a low symmetry ground state. The ground state has C2 symmetry with polarization along [110], which would be orthorhombic except for the chemical ordering which reduces the symmetry to monoclinic. We find this structure to be lower in energy than the 30-atom cell found as the ground state by Prosandeev et al. [7]. The energy versus polarization direction is very soft, making it easy to rotate the polarization, leading to relaxor behavior. In addition, the low symmetry ground state allows for 24 domain variants, leading to an apparent pseudocubic symmetry from the fine submicroscopic domains. B. PbTiO 3 We have performed a series of linear response computations for PbTiO 3 versus pressure and obtained unexpected results [8]. It was known that PT transformed to cubic at high pressures, but using linear response calculations at the zone center (q = 0) we found a series of transitions from tetragonal to monoclinic, to rhombohedral and then to cubic. More recently we find that the cubic structure may be superseded by a zone boundary instability. Most interestingly, the predicted piezoelectric constants peak in the transition region, giving electromechanical response as large as is observed in the large coupling single crystal piezoelectrics (see Fig. 1). Essentially there is a morphotropic phase transition predicted in a pure material. This result implies that the primary effect of PMN in the PMN- PT solid solution is to tune the transitions to zero pressures, rather than the relaxor behavior of PMN playing a key role. III. Shell Model Potential and Molecular Dynamics simulations As noted in the Introduction, an accurate and transferable potential is needed to study relaxor ferroelectrics as functions of temperature, pressure, composition, and state of order. Our approach is to develop a transferable shell-model potential for the relaxor ferroelectric PMN-PT based on fits to ab initio data of the endmembers, PMN and PT. A. Developing Shell Model Potential for PMN-PT The shell model [9, 10] phenomenologically describes the deformation of the electronic structure of an ion due to the interactions with other atoms. In the model, each atom is described by two charged particles: a massive core and massless shell. Electronic polarization effects are captured by the dipolar moment produced by the relative core-shell displacement.

Advances in First-Principles Studies of Transducer Materials 71 Figure 1. Computed pressure dependence on piezoelectricity in PbTiO 3. (a) Spontaneous polarization P s. (b) Piezoelectric stress coefficients e 15 and e 33. (c) Piezoelectric strain coefficients d 15 and d 33. We use a core linked to the shell by an anharmonic spring, V(w) = 1 2 c 2w 2 + 1 24 c 4w 4, where wisthe relative core-shell displacement. We have found it necessary to add a penalty term D(w w 0 ) 2 if w w 0, where w 0 = 0.2 Å and D varied from 2000 to 40000 ev, to the core-shell coupling to prevent the shell from drifting off the core and ensure the potential stability. There are Coulombic interactions between all cores and shells except the core and shell of the same atom. The short-range interactions are described using a Rydberg potential, V(r) = (A + Br) exp( r/ρ), and occur between A-O, B-O, and O-O shells. There are a total of 33 parameters for the PMN-PT system. We have fitted our potential simultaneously for both PT and PMN. We found that developing a PMN-PT potential sequentially by first developing a PT potential and then incorporating PMN, keeping the PT related parameters fixed, resulted in poor potentials for PMN. Fits were performed using our own fitting code that uses a Levenberg-Marquardt (LM) method in conjunction with singular value decomposition, which is necessary due to the highly correlated nature of the parameters. The LM-method was alternated with a simulated annealing method based on the Nelder-Mead simplex algorithm [11] in order to find a more global minimum. The input DFT-LDA data for PbTiO 3 consisted of the energy, atomic forces, and stress of 55 different configurations with cubic, tetragonal, and rhombohedral symmetry at various volumes and distortions. Phonon information (frequencies and eigenvectors at special q points, effective charges, and high frequency dielectric constants) for the cubic and tetragonal PT structures at experimental volumes were also included in the input data. For PMN

72 A. Asthagiri et al. Table 1 Structural and internal parameters for the fully relaxed tetragonal P4mm PbTiO 3. Here a and c are lattice constants (Å), and V 0 the volume (Å 3 ) LDA input Our potential Exp. (300 K) Exp. (73 K) a 3.865 3.843 3.902 3.891 c 4.042 4.155 4.156 4.167 c/a 1.046 1.081 1.065 1.071 V 0 60.37 61.36 63.28 63.08 z (Pb) 0 0 0 z(ti) 0.5235 0.5351 0.538 z(o 1,O 2 ) 0.5886 0.6191 0.612 z(o 3) 0.0823 0.1016 0.112 33 structures with 2:1 (Nb:Mg) ordering along the (111), (001), and (110) planes along with phonon information from the AFE and FE 111 NNM structures discussed in Section I were included as input data. There are a total of 3644 input data points. Our potential reproduces the relative energy of phases and structures in both PT and PMN. Table 1 shows the ground state structure for PT at zero pressure obtained from our potential versus the LDA input and experimental values. Our potential overestimates the equilibrium volume and c/a ratio compared to the LDA input. This overestimation actually brings our potential results closer to experimental values because the LDA underestimates these values. This well known difficulty the LDA and GGA functionals have reproducing the experimental volume will be addressed in Section IV. The c/a ratio obtained from out potential is slightly larger than the experimental value. Overall the potential very closely reproduces the experimental structure. As shown in Table 2, the model also reproduces the main features of the phonon dispersion curves for both the PT and PMN structures. The soft modes in the cubic PT structure are reproduced. The PT ground state is tetragonal and there are no zone-boundary Table 2 Select phonon frequencies (cm 1 ) for the PT and PMN structures obtained with the potential. The LDA results are given in parentheses. The i indicates imaginary frequencies (i.e. unstable modes) Cubic PbTiO 3 TO TO LO LO 3 R 25 244i (183i) 437 (452) 70 (50) 543 (615) 30i (83i) Tetragonal PbTiO 3 A 1 TO E TO A 1 LO E TO E Z 155 (146) 53 (90) 198 (178) 123 (112) 23 (51) FE 111 MNN PMN E TO E LO E LO A 1 TO A 1 LO 4.5i (45i) 134 (107) 270 (261) 76 (66) 76 (67) AFE 111 MNN PMN E u TO E u LO E u LO A 2u TO A 2u LO 130i (110i) 118 (94) 305 (349) 123i (90i) 127(122) (113)

Advances in First-Principles Studies of Transducer Materials 73 Figure 2. Average (a) lattice parameters and (b) polarization for PbTiO 3 as a function of temperature at zero pressure obtained from MD simulations. The dashed line indicates the experimental transition temperature of 753 K. instabilities. All of the soft modes in the AFE and FE PMN 111 MNN structure are also reproduced, but some of the highest frequencies modes are underestimated by 100 150 cm 1 for the current potential. In the following sections we present preliminary MD results that show our shell model potential reproduces much of the structure and dynamics of PMN-xPT. B. Molecular Dynamics Results for PbTiO 3 We apply the potential to simulate the finite temperature behavior of PbTiO 3. Molecular dynamics simulations were carried out using DL-POLY [12] in an (N, σ, T) ensemble. A supercell size of 6 6 6was used with periodic boundary conditions. A mass of 7 a.u. was assigned to the Pb and Ti shells and 2 a.u. to the oxygen shell. The time step was set to 0.2 fs and after equilibration (10000 MD steps) results were collected for 10 ps at each temperature. Figures 2(a) and (b) show the lattice parameters and polarization respectively as a function of temperature for PbTiO 3 at zero pressure from our simulations. We find the transition from ferroelectric tetragonal to paraelectric cubic to occur at a temperature of 900 K, which overestimates the experimental T c value of 763 K. This result can be compared to earlier shell model potentials for PbTiO 3 that showed a T c of 450 K at zero pressure [10]. Based on the LDA input data one would expect an underestimation of T c since LDA underestimates the equilibrium volume. The improved accuracy of our potential is again due to a fortuitous overestimation of the input LDA structure discussed earlier. A similar plot to Fig. 2 is shown in Fig. 3 except the transition with pressure is examined at T = 300 K. The potential captures the qualitative behavior of a transition from tetragonal to cubic structure with pressure at around 10 GPa, which underestimates the experimental transition pressure of 12.1 GPa [13]. The above results demonstrate that our potential accurately captures PT behavior, despite the incorporation of information on PMN. C. Molecular Dynamics Results for PMN PMN is a relaxor with perovskite structure and disorder on the B sites. There have been several models proposed for the distribution of the B site over Nb +5 and Mg +2.Forour MD

74 A. Asthagiri et al. Figure 3. Average (a) lattice parameters and (b) polarization for PbTiO 3 as a function of pressure at 300 K obtained from MD simulations. The experimental transition pressure is 12.1 GPa [13]. simulations we have used the random site model [14], where PMN can be represented by A(B B )O 3, where B is located in the nearest neighbor cells of B and B is equal to Nb and B is a random mixture of Mg and Nb but maintaining 1:1 ratio. The random site model has a macroscopic cubic symmetry, but local correlated distortions or chemical order may produce polar nanoregions. MD parameters and cell size are the same as the PT simulations discussed earlier. In Fig. 4 we show the pair distribution function (PDF) for small r obtained from our MD simulations as a function of temperature at zero pressure. This result can be compared to the recent experimental PDF s obtained by Jeong et al. [15] (see Fig. 1 in Ref. [15] for experimental results). Overall we observe a good match between the simulated and experimental PDF. Similar to the experimental PDF, we observe a decline in the shoulder at 2.5 Å with an increase in temperature. The shoulder is associated with splitting of the Pb-O peaks indicating that at lower temperatures there is a wider dispersion of these distances. Jeong et al. observed a split of the peak at 2.0 Åattemperatures below 300 K. This peak is associated with Mg/Nb-O interactions and indicates differences in Mg-O and Figure 4. Pair distribution function (PDF) at small r for PMN as a function of temperature obtained from MD simulations. The pressure was set to 0 GPa.

Advances in First-Principles Studies of Transducer Materials 75 Figure 5. Phonon density of states as a function of pressure at T = 300 K from our MD simulations of PMN. Nb-O interactions at lower temperatures. We do not observe this splitting at 2.0 Å, but an examination of the PDF associated with the individual Mg-O and Nb-O distances indicates that the two differ by 0.1 Å. The agreement between our simulated PDF and the experimental PDF indicates that our potential captures the general dynamics in PMN. The changes in PDF due to local order and different arrangements will require simulations of larger supercells. We have examined the phonon density of states (PDOS) at different pressures at a temperature of 300 K and the results are shown in Fig. 5. These results can be compared with Raman spectra for PMN obtained by Kriesel et al. [16]. We see a qualitative agreement in the distribution of frequencies, but the high frequency peak from our MD simulations is approximately 180 cm 1 lower than seen experimentally. This is not surprising since we observed this type of error in our fits for the high frequency mode. D. Molecular Dynamics results for PMN-PT The relaxor ferroelectric PMN-xPT was shown to have ultra-high electromechanical coupling in a range of compositions that consisted of a morphotropic boundary between rhombohedral and tetragonal phases [17]. There have been numerous experimental studies to clarify the temperature-composition phase diagram, especially near the morphotropic boundary [17, 18]. We have simulated the temperature-composition phase diagram at zero pressure for PMN-PT. The random site model is used with Ti atoms substituted randomly in the B and B sites but maintaining a Nb:Mg ratio of 2:1. The system size and MD parameters are the same as used in the above PT and PMN simulations. The lattice parameters and polarization as a function of Ti composition at 300 K is shown in Figs. 6(a) and (b) respectively. We observe a series of transitions from cubic at the PMN limit to rhombohedral phase at low concentrations of PT and then an intermediate phase before finally around 50% PMN-PT becomes clearly tetragonal. The intermediate

76 A. Asthagiri et al. Figure 6. Average (a) lattice parameter and (b) polarization of PMN-xPT as a function of PT concentration at zero pressure and a temperature of 300 K from our MD simulations. The region of the transition phase between the rhombohedral and tetragonal phase is marked by a box. phase is expected to be monoclinic of M c type (in the notation of Ref. [19]). From our simulations the intermediate phase is difficult to define unambiguously due to noise on the cell parameters and polarization, which becomes more pronounced in this transition region. Running for longer times does not reduce the noise. The intermediate phase looks triclinic, but this lower symmetry may be due to the arrangement of atoms in the application of the random site model to a small system. Simulations with larger supercells will be needed to both reduce the noise on the cell parameters and examine finer gradations of the composition. In our results the intermediate phase ranges from 30 45%, which is broader than the observed slim region around 33% seen experimentally [18]. Experimentally the monoclinic region broadens with a decrease in temperature and we find similar behavior. At high temperatures PMN-PT becomes cubic independent of the PT composition. IV. New Exchange-Correlation Potential We have developed a new non-empirical density functional generalized gradient approximation (GGA) that gives significant improvements for lattice constants and crystal structures over existing GGA s [20]. This is particularly important for ferroelectrics, since they are very sensitive to volume. LDA gives too small a volume, which decreases ferroelectric well depths and GGA generally gives too large a volume, resulting in too large distortions. PbTiO 3 illustrates the Se- severity of the problem. The PBE GGA [21] gives c/a of 1.24 rather than 1.07, and a huge volume [22]. Due to these problems, most calculations to date for ferroelectrics have used the LDA at the experimental lattice. In contrast, the new GGA gives excellent lattice parameters for PbTiO 3, (see Table 3) as well as all materials so far tested, so that the theoretical equilibrium lattice can be used. The new GGA has an enhancement factor fit to a smooth cutoff for a diffuse exchangecorrelation hole. We have studied the differences from the exchange correlation hole for PbTiO 3. The largest changes are around the atom cores, where densities and gradients are high. There are also chemically significant differences in the bonding region, though in magnitude much smaller than in the core regions. This new functional is no more computationally intensive than the PBE GGA, and should allow more accurate predictions for ferroelectrics, especially for materials with unknown lattice constants.

Advances in First-Principles Studies of Transducer Materials 77 Table 3 Structural and internal parameters for the fully relaxed tetragonal P4mm PbTiO 3. Here a and c are lattice constants (Å), and V 0 the volume (Å 3 ) LDA PBE New GGA Exp. (300 K) Exp. (73 K) a 3.865 3.847 3.890 3.902 3.891 c 4.042 4.766 4.194 4.156 4.167 c/a 1.046 1.239 1.078 1.065 1.071 V 0 60.37 70.54 63.47 63.28 63.08 z (Pb) 0 0 0 0 z(ti) 0.5235 0.5532 0.5324 0.538 z(o 1,O 2 ) 0.5886 0.6615 0.6106 0.612 z(o 3) 0.0823 0.1884 0.1083 0.112 V. Conclusions First-principles linear response calculations of ordered PMN show that PMN is likely composed of microscopic monoclinic phases with 24 possible polarization directions. New transitions from tetragonal to monoclinic to rhombohedral were discovered for PT at high pressures. PT shows large piezoelectric constants near the tetragonal to monoclinic transition. We have developed a shell model potential for PMN-PT based on fitting to first-principles calculations of ordered PMN and PT. MD calculations of PT, PMN, and PMN-xPT show that the potential is able to qualitatively reproduce the behavior of these materials across a wide range of pressures, temperatures, and compositions. A new GGA exchange functional was discussed that is very accurate for ferroelectric materials. Acknowledgments This work was supported by the Office of Naval Research and the Carnegie Institution of Washington. Computations were performed at the Center for Piezoelectrics by Design and at the Carnegie Institution. We thank Marcelo Sepliarsky, Eric Walter, Russell Hemley, and Muhetaer Aihaiti for helpful discussions. References 1. S. E. Park and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics 82, 1804 1811 (1997). 2. Ye Z.G., Relaxor Ferroelectric Complex Perovskites: Structure, Properties and Phase Transitions. Key Engineering Materials 155 156, 81 122 (1998). 3. H. Fu and R.E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281 283 (2000). 4. R. Blinc and R. Pirc, Spherical random-bond-random-field model of relaxor ferroelectrics. Phys. Rev. B 60, 13470 13478 (1999). 5. A. A. Bokov and Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. (in press)). 6. N. Choudhury, Z. G. Wu, E. J. Walter, and R. E. Cohen, Ab initio linear response and frozen phonons for the relaxor PbMg1/3Nb2/3O3. Phys. Rev. B 71, 125134 (2005); N. Choudhury, R. E. Cohen, and E. J. Walter, First principles studies of the Born effective charges and electronic

78 A. Asthagiri et al. dielectric tensors for the relaxor PMN (PbMg1/3Nb2/3O3). Computational Materials Science in press (2005). 7. S. A. Prosandeev, E. Cockayne, B. P. Burton, S. Kamba, J. Petzelt, Y. Yuzyuk, R. S. Katiyar, and S. B. Vakhrushev, Lattice dynamics in PbMg 1/3 Nb 2/3 O 3. Phys. Rev. B 70, 134110 (2004). 8. Z. G. Wu and R. E. Cohen, Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO 3. Phys. Rev. Lett. 95, 37601 (2005). 9. M. Sepliarsky, S. Phillpot, D. Wolf, M. Stachiotti, and R. Migoni, Atomic-level simulation of ferroelectricity in perovskite solid solutions. Appl. Phys. Lett. 76, 3986 3988 (2000). 10. M. Sepliarsky and R. E. Cohen, Development of a shell model potential for molecular dynamics for PbTiO3 by fitting first-principles results, infundamental Physics of Ferroelectrics 2002, R. E. Cohen, Editor. AIP: Melville, NY (2002). p. 36 44. 11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing. New York: Cambridge University Press (1992). 12. DL POLY is a parallel molecular dynamics simulation package developed at Darebury Laboratory by W. Smith and T. R. Forester under the auspices of the Engineering and Physical Sciences Research Council (EPSRC) for the EPSRC s Collaborative Computational Project for the Computer Simulation of Condensed Phases (CCP5) and the Advanced Research Computing Group (ARCG) at Daresbury Laboratory. The package is the property of Daresbury Laboratory. http://www.cse.clrc.ac.uk/msi/software/dl POLY/ 13. J. A. Sanjurjo, E. Lopez-Cruz, and G. Burns, High-pressure Raman study of zone-center phonons in PbTiO 3. Phys. Rev. B 28 (1983). 14. M. A. Akbas and P. K. Davies, Thermally induced coarsening of the chemically ordered domains in Pb(Mg 1/3 Nb 2/3 )O 3 (PMN)-based relaxor ferroelectrics. Journal of the American Ceramic Society, 83, 119 123 (2000). 15. I. K. Jeong, T. W. Darling, J. K. Lee, T. Proffen, R. H. Heffner, J. S. Park, K. S. Hong, W. Dmowski, and T. Egami, Direct observation of the formation of polar nanoregions in Pb(Mg 1/3 Nb 2/3 )O 3 using neutron pair distribution function analysis. Phys. Rev. Lett. 94, 147602 (2005). 16. J. Kreisel, B. Dkhil, P. Bouvier, and J. M. Kiat, Effect of high pressure on relaxor ferroelectrics. Physical Review B 65, 172101 (2002). 17. B. Noheda, D. E. Cox, G. Shirane, J. Gao, and Z.G. Ye, Phase diagram of the ferroelectric relaxor (1-x)PbMg 1/3 Nb 2/3 O 3 -xpbtio 3. Phys. Rev. B 66, 054104 (2002). 18. D. La-Orauttapong, B. Noheda, Z. G. Ye, P. M. Gehring, J. Toulouse, D. E. Cox, and G. Shirane, Phase diagram of the relaxor ferroelectric (1-x)Pb(Zn 1/3 Nb 2/3 )O 3 -xpbtio 3. Phys. Rev. B 65, 4101 (2002). 19. D. Vanderbilt and M. H. Cohen, Monoclinic and triclinic phases in higher-order Devonshire theory. Phys. Rev. B 63, 94108 94117 (2001). 20. Z. Wu and R. E. Cohen, Generalized Gradient Approximation Made More Accurate for Solids. http://xxx.lanl.gov/abs/cond-mat/0508004. 21. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 3868 (1996). 22. Z. Wu, R. E. Cohen, and D. J. Singh, Comparing the weighted density approximation with the LDA and GGA for ground state properties of ferroelectric perovskites. Phys. Rev. B 70, 104112 (2004).