NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

Similar documents
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

Iterative General Dynamic Model for Serial-Link Manipulators

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

MEV442 Introduction to Robotics Module 2. Dr. Santhakumar Mohan Assistant Professor Mechanical Engineering National Institute of Technology Calicut

Physics 181. Particle Systems

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1)

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

PHYS 705: Classical Mechanics. Newtonian Mechanics

T f. Geometry. R f. R i. Homogeneous transformation. y x. P f. f 000. Homogeneous transformation matrix. R (A): Orientation P : Position

Spring Force and Power

Rigid body simulation

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

The classical spin-rotation coupling

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.

12. The Hamilton-Jacobi Equation Michael Fowler

Lesson 5: Kinematics and Dynamics of Particles

An Algorithm to Solve the Inverse Kinematics Problem of a Robotic Manipulator Based on Rotation Vectors

1 Matrix representations of canonical matrices

Conservation of Angular Momentum = "Spin"

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Mathematical Preparations

coordinates. Then, the position vectors are described by

EE 570: Location and Navigation: Theory & Practice

Linear Momentum. Center of Mass.

Kinematics in 2-Dimensions. Projectile Motion

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

Week 9 Chapter 10 Section 1-5

Integrals and Invariants of Euler-Lagrange Equations

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

8.592J: Solutions for Assignment 7 Spring 2005

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Lecture 20: Noether s Theorem

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

Classical Mechanics ( Particles and Biparticles )

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

Lie Group Formulation of Articulated Rigid Body Dynamics

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Canonical transformations

11. Dynamics in Rotating Frames of Reference

ENGI9496 Lecture Notes Multiport Models in Mechanics

10. Canonical Transformations Michael Fowler

Modeling of Dynamic Systems

DARWIN-OP HUMANOID ROBOT KINEMATICS. Robert L. Williams II, Ph.D., Mechanical Engineering, Ohio University, Athens, Ohio, USA

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

Section 8.3 Polar Form of Complex Numbers

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

MEEM 3700 Mechanical Vibrations

where v means the change in velocity, and t is the

Spin-rotation coupling of the angularly accelerated rigid body

PHYS 705: Classical Mechanics. Calculus of Variations II

10/23/2003 PHY Lecture 14R 1

How Differential Equations Arise. Newton s Second Law of Motion

2D Motion of Rigid Bodies: Falling Stick Example, Work-Energy Principle

AP Physics 1 & 2 Summer Assignment

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

Problem Points Score Total 100

So far: simple (planar) geometries

Physics 2A Chapter 3 HW Solutions

ROTATIONAL MOTION. dv d F m m V v dt dt. i i i cm i

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

Lecture 23: Newton-Euler Formulation. Vaibhav Srivastava

Difference Equations

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Mathematics Intersection of Lines

Chapter 11 Angular Momentum

8.6 The Complex Number System

Physics 111: Mechanics Lecture 11

How Strong Are Weak Patents? Joseph Farrell and Carl Shapiro. Supplementary Material Licensing Probabilistic Patents to Cournot Oligopolists *

Robot Modeling and Kinematics Errata R. Manseur. List of errors and typos reported as of 4/1/2007:

Study Guide For Exam Two

Lecture 12: Discrete Laplacian

CHAPTER 10 ROTATIONAL MOTION

PHYS 705: Classical Mechanics. Canonical Transformation II

Poisson brackets and canonical transformations

Introduction to Antennas & Arrays

Notes on Analytical Dynamics

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Statistical mechanics handout 4

PHYS 1441 Section 002 Lecture #16

Module 9. Lecture 6. Duality in Assignment Problems

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

In this section is given an overview of the common elasticity models.

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

Screw and Lie group theory in multibody kinematics

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Model of cyclotorsion in a Tendon Driven Eyeball: theoretical model and qualitative evaluation on a robotic platform

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Transcription:

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

4. Moton Knematcs 4.2 Angular Velocty Knematcs Summary From the last lecture we concluded that: If the jonts are all rotary then: ω () t zˆ zˆ zˆ J n 2 n 2 n However, f Jont "" s Prsmatc then the correspondng column n the angular velocty Jacoban (.e. J ) wll be ZERO!! For example f jont #2 s prsmatc we get: ω ( ) ˆ ˆ d d t z z J n n 2 2 n n Asde: What s the dfference between Tp B B A and Rp B B A? Pure translaton wll NOT gve rse to a change n orentaton 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 2 / 27

4. Moton Knematcs 4.2 Translatonal Velocty Knematcs Snce the jont varables could be θ (rotary jont) or d (prsmatc jont), let's represent the jont varable by the symbol q, whch could be ether rotary or prsmatc. If Jont "" s Prsmatc: (Assume that only one jont s movng) q, j j d n d d () t o Remember, only jont "" s movng, the others are not movng (q j =, j ). 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 3 / 27

4. Moton Knematcs 4.2 Translatonal Velocty Knematcs From the dagram, dn t d d q t dn ( ) ( ( )) ( ) d R d ( q ( t)) R d n (4.) CONSTANT Tme Varyng CONSTANT d n d n d d () t 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 4 / 27

4. Moton Knematcs 4.2 Translatonal Velocty Knematcs But, (neglectng the sub-sub-scrpt) d ( q ( t)) q ( t) z d Note that R d d as d T d = R refers to the orgn of {n} as seen from {}. d + d Substtutng equaton (4.2) nto (4.) and dfferentatng gves, q (4.2) d dt d dn t R d q t ( ) ( ( )) dt v ( t) R z q ( t) z q ( t) n (4.3) Note that R R v () t z = z as z means z, the z-axs of coordnate frame {} descrbed n terms of {}. The vector z represents the mappng of a "free vector". 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 5 / 27

4. Moton Knematcs 4.2 Translatonal Velocty Knematcs If Jont "" s Rotary: (Assume that only one jont s movng) d n d Agan only jont s movng, the others are not movng. 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 6 / 27

4. Moton Knematcs 4.2 Translatonal Velocty Knematcs From the dagram, d ( t) d ( d ) ( d ) n n d ( ( )) R d R t d n (4.4) Dfferentatng (4.4) gves, d n d dt RR d ( t) R R( ( t)) d n n R ( t) R( t) d n (4.5) a3 a 2 b a2b3 a3b2 R ( t) ( R( t) d ) a b n a3 a b 2 a3b ab 3 a b ( ar 2 a ( t)) ( R ( t b ) d n 3 a ) b2 a2b 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 7 / 27

4. Moton Knematcs 4.2 Translatonal Velocty Knematcs Now, recallng that ( t) ˆ k ( t) z ( t) allows us to smplfy the expresson R ( t) R z ( t) and z () t d n d n R( t) d d ( t) d n n d 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 8 / 27

4. Moton Knematcs 4.2 Translatonal Velocty Knematcs Substtutng back nto (4.5) yelds, (4.6) Note that R z = z as z means z, the z-axs of coordnate frame {} descrbed n terms of {}. The vector z represents the mappng of a "free vector". Equaton (4.6) s effectvely where and vn z t dn t d ( ) ( ( ) ) v r z r d d ( n ) 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 9 / 27

4. Moton Knematcs 4.2. Compoundng of Translatonal Veloctes (all jonts movng) As n the prevous case wth angular veloctes, f all the jonts are movng (prsmatc or rotary) the translatonal velocty at the tp becomes: v ( t) v ( t) v ( t) v ( t) n 2 n where agan the v 's are the ndvdual contrbutons compounded by equaton (4.3) as or v ( t) z q( t) f the th jont s prsmatc ( ) ( n ( ) ) ( ) v t z d t d q t f the th jont s rotary where the jont varable q (t) could be an angle (θ (t)) or a dsplacement (d (t)). 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde / 27

4. Moton Knematcs 4.3. The Drect Method To account for the fact that a jont varable could be θ(t) (rotary jont) or d(t) (prsmatc jont) we can use q(t) as a "generc" jont varable to represent both possbltes. In lght of our orgnal ntent, whch was to descrbe how the rate of change of jont varables effects the rate of change of tool pose (.e., n th coordnate frame moton), we can now wrte: vn () t n() t J q( t) q( t) J J v q() t q() t qt () J J2 J n q() t (4.7) 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde / 27

4. Moton Knematcs 4.3. The Drect Method If the th jont s rotary, then: If the th jont s prsmatc, then: ˆ z dn () t d org org J,,, n zˆ (4.8) J,,, n z ˆ (4.9) Thus, usng equatons (4.8) and (4.9) we can buld J. Ths s the Drect Method of Constructng the Jacoban 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 2 / 27

4. Moton Knematcs 4.3.2 An Alternatve Method As noted earler the tool poston s d n () t and therefore the rate of change of tool poston s d dn () v ( t) dn ( q( t)) q( t) dt q n 2 Therefore, the translatonal part of the Jacoban can be obtaned as Jv q( t) q( t) Jv Jv Jv n q( t) J v dn () q (4.2) 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 3 / 27

4. Moton Knematcs 4.3.2 An Alternatve Method For the orentatonal part of the Jacoban we could obtan the angular velocty by recallng equaton (4.4), whch allows us to wrte.e., ( t) R( t) R T ( t) n n n (4.2) z y ωn z x n n T ( t) R( t) R ( t) y x (4.22) Now equatng the correspondng terms gves R( t) R ( t) T n n 3,2 x T y ωn ( t) n R( t) n R ( t),3 z T nr( t) nr ( t) 2, 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 4 / 27

4. Moton Knematcs 4.3.2 An Alternatve Method Then factorng out terms n q,..., q n from the rhs of the above gves rse to ( t ωn ) q ( t ) o Choosng between the approaches descrbed n Sectons 4.3. and 4.3.2 s somewhat dependent on the problem at hand! 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 5 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example Example: The ADEPT robot s a so called SCARA (Selectvely Complant Assembly Robot Arm) type robot. VRML Smulaton 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 6 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example The Denavt-Hartenberg table: D-H params. - a - d d a 2 a 2 3 8 d t 4 3 () d 4 () t () t 2 () t 4 Usng MATHEMATICA to generate the T-matrces. 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 7 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example C S S C T(,,, ( t)) C2 S2 a S2 C2 2T(, a,, 2( t)) a2 T(8, a, d ( t),) -d3( t) C4 S4 3 S4 C4 4T(,, d4, 4( t)) d4 2 3 2 3 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 8 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example Note that: q( t) ( t), ( t), d ( t), ( t) T 2 3 4 (4.23) C2 S2 Ca S C S a R d xˆ yˆ zˆ d 2 2 2 2 2 2 2 2 2T T 2T C2 S2 C2a2 Ca S C S a S a R d 2 2 2 2 2 3 3 3T 2T 3T d3( t) C2C4 S2S4 S2C4 C2S4 C2a2 Ca S C C S C S S S a S a R d 3 2 4 2 4 2 2 4 2 2 4 4 4T 3T 4T d4 d3( t) 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 9 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example Usng the Drect Method of Secton 4.3. Snce jont s rotary then: J C2a2 Ca S2a2 Sa S S a a C a Ca zˆ 2 2 2 2 ˆ ( ) z d4 d d4 d3 t Snce jont 2 s rotary then: J 2 C2a2 S2a2 S C a a zˆ 2 2 2 2 2 ˆ ( ) z2 d4 d2 d4 d3 t 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 2 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example Snce jont 3 s prsmatc then: J 3 zˆ 3 Snce jont 4 s rotary then: J 4 ˆ z4 d4 d4 zˆ 4 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 2 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example Puttng ths all together yelds the Jacoban as Hence, 2 2 2 2 J v 2 3 4 J J q() t J J J J () t v4() t 2() t J q( t) J q( t) q( t) 4() t d3() t 4() t S2a2 Sa S2a2 C a C a C a (4.24) 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 22 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example Asde: Recall that ω4(t) = J ω q and v4(t) = J v q, hence 4( t) ( t) 2( t) 4( t) ( t) 2( t) 4( t) Usng the Alternatve Method of Secton 4.3.2 Let us frst look at the translatonal part of the Jacoban. Now, d v ( t) d ( q( t)) dt 4 4 d 4 ( ) d4 ( ) d4 ( ) d4 ( ) q ( t) q ( t) q ( t) q ( t) q q q q 2 3 4 2 3 4 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 23 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example d Evaluatng the ndvdual partals gves: 4 2 2 C2a2 Ca S S a a d4 d3() t S2a2 Sa d4 () C2 2 C a a d 2 2 4 d d 4 4 2 d 3 4 () () () S a C 2a2 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 24 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example Therefore, J v S2a2 Sa S2a2 C2a2 Ca C2a2 (4.25) Let us next look at the rotatonal part of the Jacoban. Now, T ( t) ( t) R( t) R ( t) 4 4 4 4 (4.26) C C S S S C C S S C C S C C S S 2 4 2 4 2 4 2 4 4 R 2 4 2 4 2 4 2 4 C24 S24 S24 C24 where C 2 4 Cos(θ + θ 2 θ 4 ) and S 2 4 Sn(θ + θ 2 θ 4 ). 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 25 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example Usng the substtuton θ 2 4 = (θ + θ 2 θ 4 ) for the sake of clarty: S24 C24 d 4 R C2 4 S2 4 24 dt S24 C24 C24 S24 T ωn ( t) n R( t) n R ( t) C S S C 2 4 24 24 24 24 24 3 2 3 2 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 26 / 27

4. Moton Knematcs 4.3.3 A Jacoban Example ( ) ( ) 2 Jq( t) d 3 4 ω t n 24 2 4 (4.27) Puttng together the results of equaton (4.25) for J v and equaton (4.27) for J ω we get, J q() t S2a2 Sa S2a2 C2a2 Ca C2a2 Jv q() t J q() t Both methods agree!!! 2, Dr. Stephen Bruder Thur 27th Sept 22 Slde 27 / 27