Combinatorics and geometry of E 7

Similar documents
a double cover branched along the smooth quadratic line complex

Sheaf cohomology and non-normal varieties

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

9. Birational Maps and Blowing Up

We can choose generators of this k-algebra: s i H 0 (X, L r i. H 0 (X, L mr )

Lecture 1. Toric Varieties: Basics

EKT of Some Wonderful Compactifications

Counting matrices over finite fields

Symplectic varieties and Poisson deformations

Chern numbers and Hilbert Modular Varieties

BRILL-NOETHER THEORY. This article follows the paper of Griffiths and Harris, "On the variety of special linear systems on a general algebraic curve.

Homogeneous Coordinate Ring

Algebraic Geometry (Math 6130)

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013

GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS

The Algebraic Degree of Semidefinite Programming

LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F)

Geometry of moduli spaces

On exceptional completions of symmetric varieties

Special cubic fourfolds

Arithmetic applications of Prym varieties in low genus. Nils Bruin (Simon Fraser University), Tübingen, September 28, 2018

Mathematics 7800 Quantum Kitchen Sink Spring 2002

THE SEMISIMPLE SUBALGEBRAS OF EXCEPTIONAL LIE ALGEBRAS

Compactifications of Siegel Modular Varieties

Definition 9.1. The scheme µ 1 (O)/G is called the Hamiltonian reduction of M with respect to G along O. We will denote by R(M, G, O).

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers

The Pennsylvania State University The Graduate School Eberly College of Science AN ASYMPTOTIC MUKAI MODEL OF M 6

MAKSYM FEDORCHUK. n ) = z1 d 1 zn d 1.

Background on Chevalley Groups Constructed from a Root System

DIVISOR THEORY ON TROPICAL AND LOG SMOOTH CURVES

Ursula Whitcher May 2011

Spherical varieties and arc spaces

RESEARCH STATEMENT FEI XU

1. Algebraic vector bundles. Affine Varieties

(1) is an invertible sheaf on X, which is generated by the global sections

Toroidal Embeddings and Desingularization

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS

ASSOCIATED FORM MORPHISM

Primitive Ideals and Unitarity

Porteous s Formula for Maps between Coherent Sheaves

HYPERKÄHLER MANIFOLDS

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

H(G(Q p )//G(Z p )) = C c (SL n (Z p )\ SL n (Q p )/ SL n (Z p )).

OLIVIER SERMAN. Theorem 1.1. The moduli space of rank 3 vector bundles over a curve of genus 2 is a local complete intersection.

Plane quartics and Fano threefolds of genus twelve

Math 249B. Geometric Bruhat decomposition

Algebraic Geometry. Question: What regular polygons can be inscribed in an ellipse?

Toric Varieties. Madeline Brandt. April 26, 2017

COX RINGS OF RATIONAL SURFACES AND FLAG VARIETIES OF ADE-TYPES

Demushkin s Theorem in Codimension One

Del Pezzo surfaces and non-commutative geometry

AN INTRODUCTION TO MODULI SPACES OF CURVES CONTENTS

PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS

Comparison for infinitesimal automorphisms. of parabolic geometries

TWO LECTURES ON APOLARITY AND THE VARIETY OF SUMS OF POWERS

Gram Spectrahedra. Lynn Chua UC Berkeley. joint work with Daniel Plaumann, Rainer Sinn, and Cynthia Vinzant

Nef line bundles on M 0,n from GIT

Classification of root systems

Hodge Structures. October 8, A few examples of symmetric spaces

Toric Varieties and the Secondary Fan

Problem set 2. Math 212b February 8, 2001 due Feb. 27

LIE ALGEBRAS: LECTURE 7 11 May 2010

ALGEBRAIC GEOMETRY I, FALL 2016.

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle

Equations for Hilbert modular surfaces

Homological Mirror Symmetry and VGIT

SEMISIMPLE LIE GROUPS

Geometry and combinatorics of spherical varieties.

Representations and Linear Actions

e j = Ad(f i ) 1 2a ij/a ii

Hypertoric varieties and hyperplane arrangements

CONGRUENCE SUBGROUPS AND ENRIQUES SURFACE AUTOMORPHISMS

Tropical Constructions and Lifts

On splitting of the normalizer of a maximal torus in groups of Lie type

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday 10 February 2004 (Day 1)

Institutionen för matematik, KTH.

MA 206 notes: introduction to resolution of singularities

Lecture Notes Introduction to Cluster Algebra

MODULI SPACES OF CURVES

Lecture VI: Projective varieties

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Polynomials, Ideals, and Gröbner Bases

VICTOR V. BATYREV AND OLEG N. POPOV

Reductive group actions and some problems concerning their quotients

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109

arxiv: v1 [math.rt] 14 Nov 2007

The moduli space of binary quintics

Math 210C. The representation ring

Hodge theory for combinatorial geometries

Quotients by algebraic groups Properties of actions.

Defining equations for some nilpotent varieties

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 41

Math 797W Homework 4

INTRODUCTION TO GEOMETRIC INVARIANT THEORY

Homological mirror symmetry via families of Lagrangians

Overview of classical mirror symmetry

div(f ) = D and deg(d) = deg(f ) = d i deg(f i ) (compare this with the definitions for smooth curves). Let:

Hyperkähler geometry lecture 3

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

Transcription:

Combinatorics and geometry of E 7 Steven Sam University of California, Berkeley September 19, 2012 1/24

Outline Macdonald representations Vinberg representations Root system Weyl group 7 points in P 2 Quartic curves Kummer varieties Coble s quartic hypersurfaces Göpel variety Göpel polytope 2/24

Finite (simply-laced) Coxeter groups Start with a finite connected graph Γ. For every node i Γ, introduce a generator s i and construct a group with relations s 2 i = 1 (s i s j ) 2 = 1 if i and j are not adjacent (s i s j ) 3 = 1 if i and j are adjacent When is this group W(Γ) finite? 3/24

(Simply-laced) Dynkin diagrams A n... D n... E 6 E 7 E 8 These groups can be realized as groups generated by reflections in some Euclidean space. 4/24

Take the following 63 = 7+ ( 7 2) + ( 7 3) vectors in R 8 : e 8 e i (1 i 7), Root system of E 7 e i e j (1 i < j 7), 1 2 (e 8 + e i e j ) i σ j σ σ {1,2,...,7}, σ = 3 Each vector v ( positive root ) gives a reflection s v : s v negates v and fixes the hyperplane orthogonal to it. The group generated by all s v is isomorphic to W(E 7 ). It s enough to take any collection of 7 positive roots in a root basis (e.g., {e i e i+1 i = 1,...,6} { 1 2 ( 1, 1, 1, 1,1,1,1,1)}) More tangible: W(E 7 ) = Z/2 Sp 6 (F 2 ) (symplectic group over a finite field with 2 elements). This is a hint that W(E 7 ) is related to Siegel modular forms. 5/24

Cayley s bijection A. Cayley, J. Reine Angew. Mathe. 87 (1879), 165 169. 000 100 010 110 001 101 011 111 000 236 345 137 467 156 124 257 100 237 67 136 12 157 48 256 35 010 245 127 23 68 134 357 15 47 110 126 13 78 145 356 25 46 234 001 567 146 125 247 45 17 38 26 101 147 58 246 34 16 123 27 367 011 135 347 14 57 28 36 167 456 111 346 24 56 235 37 267 457 18 For x,y F 6 2, define x,y = x 1 y 4 +x 2 y 5 +x 3 y 6 +x 4 y 1 +x 5 y 2 +x 6 y 3. The above table gives bijection between positive roots and F 6 2 \0 (example: 247 001110). Two roots are orthogonal if and only if the corresponding vectors pair to 0. 6/24

Cremona transformations Given 7 ordered points p 1,...,p 7 in general position in P 2, do a change of coordinates so that p 1 = [1 : 0 : 0],p 2 = [0 : 1 : 0],p 3 = [0 : 0 : 1],p 4 = [1 : 1 : 1]. In these coordinates, define σ([x : y : z]) = [x 1 : y 1 : z 1 ], so this gives us a birational involution (p 1,...,p 7 ) (p 1,...,p 4,σ(p 5 ),σ(p 6 ),σ(p 7 )) on the (GIT) moduli space (P 2 ) 7 of 7 ordered points in P 2. For i = 1,...,6, let s i be the involution that swaps p i and p i+1. Then s 1,...,s 6,σ generates the group W(E 7 ) and this gives a birational action of W(E 7 ) on (P 2 ) 7. 7/24

Plane quartic curves Given 7 points p 1,...,p 7 P 2 in general position, the space of cubic polynomials vanishing on them is 3-dimensional; fix a basis q 1,q 2,q 3. This gives a map q: P 2 \{p 1,...,p 7 } P 2 [x : y : z] [q 1 (x,y,z) : q 2 (x,y,z) : q 3 (x,y,z)]. Consider the graph of q in P 2 P 2. The closure is a del Pezzo surface X and the projection π 2 : X P 2 is of degree 2, i.e., for almost all x P 2, π2 1 (x) is 2 points. The locus where this fails is defined by a quartic polynomial. The resulting quartic curve (up to change of coordinates) is independent of the W(E 7 )-orbit of p 1,...,p 7 under the action from the last slide. It is a smooth projective curve of genus 3. 8/24

Jacobians and Kummer varieties For any smooth projective curve C of genus g, the set of all isomorphism classes of line bundles on C forms a group under tensor product. Those of degree 0 also have the structure of a g-dimensional smooth projective variety J(C), the Jacobian of C. The Kummer variety K(C) of C is the quotient of J(C) by the involution L L 1 (the inverse map on line bundles). It naturally admits an embedding in projective space P 2g 1. For our plane quartic, we have g = 3, and we will consider the Kummer variety as a subvariety of P 7. 9/24

Heisenberg groups There is a natural subgroup of automorphisms in GL 8 acting on K(C) P 7. Let (x ijk ) i,j,k Z/2 be the coordinates on P 7. The (finite) Heisenberg group H is generated by the 6 operators x ijk ( 1) i x ijk x ijk ( 1) j x ijk x ijk ( 1) k x ijk x ijk x i+1,j,k x ijk x i,j+1,k x ijk x i,j,k+1 The Heisenberg group H is obtained by adding all scalar matrices. The action of H preserves K(C). Connecting to W(E 7 ): Let N( H) = {g GL 8 g Hg 1 = H} be the normalizer. Then N( H)/ H = Sp 6 (F 2 ). 10/24

Coble s quartic hypersurface Arthur Coble (1878 1966) showed that K(C) is the singular locus of a quartic hypersurface Q(C) in P 7, and that this is the unique such quartic hypersurface with this property. (It was later shown that Q(C) is the moduli space of semistable principal SL 2 bundles on C) By uniqueness, the equation of Q(C) will be an invariant of the finite Heisenberg group H. The space of invariant quartic polynomials is 15-dimensional. So this equation has the following form: 11/24

Coble s quartic hypersurface F C = r (x 4 000 +x4 001 +x4 010 +x4 011 +x4 100 +x4 101 +x4 110 +x4 111 ) +s 001 (x 2 000 x2 001 +x2 010 x2 011 +x2 100 x2 101 +x2 110 x2 111 ) +s 010 (x 2 000 x2 010 +x2 001 x2 011 +x2 100 x2 110 +x2 101 x2 111 ) +s 011 (x 2 000 x2 011 +x2 001 x2 010 +x2 100 x2 111 +x2 101 x2 110 ) +s 100 (x 2 000 x2 100 +x2 001 x2 101 +x2 010 x2 110 +x2 011 x2 111 ) +s 101 (x 2 000 x2 101 +x2 001 x2 100 +x2 010 x2 111 +x2 011 x2 110 ) +s 110 (x 2 000 x2 110 +x2 001 x2 111 +x2 010 x2 100 +x2 011 x2 101 ) +s 111 (x 2 000 x2 111 +x2 001 x2 110 +x2 010 x2 101 +x2 011 x2 100 ) +t 001 (x 000 x 010 x 100 x 110 +x 001 x 011 x 101 x 111 ) +t 010 (x 000 x 001 x 100 x 101 +x 010 x 011 x 110 x 111 ) +t 011 (x 000 x 011 x 100 x 111 +x 001 x 010 x 101 x 110 ) +t 100 (x 000 x 001 x 010 x 011 +x 100 x 101 x 110 x 111 ) +t 101 (x 000 x 010 x 101 x 111 +x 001 x 011 x 100 x 110 ) +t 110 (x 000 x 001 x 110 x 111 +x 010 x 011 x 100 x 101 ) +t 111 (x 000 x 011 x 101 x 110 +x 001 x 010 x 100 x 111 ) Question: what conditions are imposed on the coefficients r,s,t? Let G be the (closure) of all possible r,s 100,...,t 111 (Göpel variety). 12/24

Göpel variety Theorem (Ren S. Schrader Sturmfels) The 6-dimensional Göpel variety G has degree 175 in P 14. The homogeneous coordinate ring of G is Gorenstein, it has the Hilbert series 1+8z +36z 2 +85z 3 +36z 4 +8z 5 +z 6 (1 z) 7, and its defining prime ideal is minimally generated by 35 cubics and 35 quartics. The graded Betti table of this ideal in the polynomial ring Q[r,s 001,...,t 111 ] in 15 variables equals 0 1 2 3 4 5 6 7 8 total: 1 70 609 1715 2350 1715 609 70 1 0: 1........ 1:......... 2:. 35 21...... 3:. 35 588 1715 2350 1715 588 35. 4:...... 21 35. 5:......... 6:........ 1 13/24

Macdonald representations Recall that Sp 6 (F 2 ) = N( H)/ H. So the space of coefficients r,s,t in the equation of the Coble quartic is a linear representation of Sp 6 (F 2 ), and hence of W(E 7 ) = Z/2 Sp 6 (F 2 ). Back to the root system: There are 135 collections of 7 roots which are pairwise orthogonal, and W(E 7 ) acts transitively on them. Each collection gives a degree 7 polynomial (take the product of the corresponding linear functionals), and the linear span of these 135 polynomials is 15-dimensional. This gives a linear representation of W(E 7 ), which is a special instance of a Macdonald representation. Ignoring the Z/2 factor, this is the same representation as above. 14/24

Macdonald representations Let c 1,...,c 7 be a fixed set of pairwise orthogonal roots and do a change of coordinates to them. Then the matching of the two representations is as follows: r = 4c 1 c 2 c 3 c 4 c 5 c 6 c 7 s 001 = c 1 c 2 c 7 (c 4 3 2c2 3 c2 4 + c4 4 2c2 3 c2 5 2c2 4 c2 5 + c4 5 2c2 3 c2 6 2c2 4 c2 6 2c2 5 c2 6 + c4 6 ). t 111 = c 4 ( c 4 1 c2 2 + c2 1 c4 2 + c4 1 c2 3 c4 2 c2 3 c2 1 c4 3 + c2 2 c4 3 c4 1 c2 5 2c2 1 c2 2 c2 5 + 2c2 2 c2 3 c2 5 + c4 3 c2 5 + c 2 1 c4 5 c2 3 c4 5 + 2c2 1 c2 2 c2 6 + c4 2 c2 6 2c2 1 c2 3 c2 6 c4 3 c2 6 + 2c2 1 c2 5 c2 6 2c2 2 c2 5 c2 6 + c4 5 c2 6 c 2 2 c4 6 + c2 3 c4 6 c2 5 c4 6 + c4 1 c2 7 c4 2 c2 7 + 2c2 1 c2 3 c2 7 2c2 2 c2 3 c2 7 + 2c2 2 c2 5 c2 7 2c2 3 c2 5 c2 7 c 4 5 c2 7 2c2 1 c2 6 c2 7 + 2c2 3 c2 6 c2 7 + c4 6 c2 7 c2 1 c4 7 + c2 2 c4 7 + c2 5 c4 7 c2 6 c4 7 ) So we can think of the r,s,t as functions on R 7. Complexify this to C 7, and we get a map on P 6 (only defined on an open dense set) P 6 P 14 [c 1 : : c 7 ] [r(c) : s 100 (c) : : t 111 (c)] The closure of the image is the Göpel variety G. 15/24

Toric variety The Macdonald perspective offers something new. Rather than take a basis of the 135 degree 7 polynomials, use all of them to get a map P 6 P 134. Also, instead of treating each root as a vector in R 7, pretend that they are all linearly independent. Then the map can be lifted to a monomial map P 62 P 134. The closure of the image T is automatically a toric variety, that is, it has an action of a torus with a dense orbit. As such, its ideal of definition is generated by binomials, i.e., differences of monomials. In fact, G = T P 14, so the ideal of definition of G (in P 134 is generated by binomials and linear equations (which turn out to be trinomials). 16/24

Göpel polytope Associated to a monomial map, we naturally get a polytope by thinking of each monomial as a 0-1 vector and taking the convex hull. In our case, the Göpel polytope P R 63 can be described as follows: identify each coordinate of R 63 with positive roots (equivalently, F 6 2 \0). Each vertex has 7 1 s and 56 0 s; the 1 s correspond to 7 pairwise orthogonal roots (equivalently, a Lagrangian subspace). Question: Is P a normal polytope? i.e., is every lattice point of dp (dth dilate of P) a sum of d lattice points in P? 17/24

Tropicalization The Göpel variety G is a compactification of the moduli space of non-hyperelliptic genus 3 curves (i.e., plane quartic curves) with level structure. From our presentation of G as defined by linear trinomials and cubic and quartic binomials in P 134, we expect that its tropicalization behaves well, especially since G has a parametrization in terms of a linear map l and a monomial map m: P 6 l P 62 m P 134. This approach requires calculating the Bergman fan of the (matroid of) the root system E 7, which is currently out of our reach. However, this would give a hint on how to define tropical moduli spaces with level structure. 18/24

Vinberg representations Let g be a simple Lie algebra (over C) with an order d automorphism θ. Then θ gives an eigenspace decomposition g = g i. i Z/d Vinberg studied the invariant theory of such decompositions. Namely, the action of Group(g 0 ) (the associated simply-connected complex Lie group) on g 1 behaves like the action of Group(g) on g. It makes sense to say that an element of g is semisimple (diagonalizable) or nilpotent, so the same notions carry over to g 1. A Cartan subspace of g 1 is a maximal subspace consisting of pairwise commuting semisimple elements. Vinberg showed that all of them form one orbit under Group(g 0 ). 19/24

A model for e 7 Let g be the simple Lie algebra of type E 7. It has an order 2 automorphism θ such that the decomposition is g = sl 8 4 C 8 Cartan subspaces h 4 C 8 have dimension 7. Vinberg s theory tells us that N(h)/Z(h) = W(E 7 ) where N(h) = {g Group(g 0 ) g h = h} Z(h) = {g Group(g 0 ) g x = x for all x h}. (Note: if we use Group(g) instead of Group(g 0 ), this is well known Lie theory, but in general Cartan subspaces in g 1 could be strictly smaller than those in g) 20/24

Cartan subspace of 4 C 8 Let A be an 8-dimensional complex vector space with basis a 1 = x 000, a 2 = x 100, a 3 = x 010, a 4 = x 110, a 5 = x 001, a 6 = x 101, a 7 = x 011, a 8 = x 111. The Heisenberg group H acts on 4 A and the space of invariants has the following basis: h 1 = a 1 a 2 a 3 a 4 + a 5 a 6 a 7 a 8, h 2 = a 1 a 2 a 5 a 6 + a 3 a 4 a 7 a 8, h 3 = a 1 a 3 a 5 a 7 + a 2 a 4 a 6 a 8, h 4 = a 1 a 4 a 6 a 7 + a 2 a 3 a 5 a 8, h 5 = a 1 a 3 a 6 a 8 + a 2 a 4 a 5 a 7, h 6 = a 1 a 4 a 5 a 8 + a 2 a 3 a 6 a 7, h 7 = a 1 a 2 a 7 a 8 + a 3 a 4 a 5 a 6. 21/24

Orbit structure of 3 C 7 Consider G = GL 7 (C) acting on V = 3 C 7. There are finitely many orbits of this action, but we ll be interested in 3 of them: There is an invariant hypersurface of degree 7. It is the projective dual of (the affine cone over) Gr(3, 7). Singular locus of the above hypersurface has codimension 4. Singular locus of the above orbit closure has codimension 7. These can also be defined in a relative setting: if E is a rank 7 vector bundle on a space and L is a line bundle, then the total space of 3 E L has subvarieties like the above (we can define them locally where the bundle is trivial, and they don t depend on a choice of basis, so they agree on overlaps and patch together) 22/24

Degeneracy loci Consider the space P 7 with rank 7 vector bundle E = Ω 1 P 7 (cotangent bundle) and L = O P 7(4). Let X 1,X 4,X 7 be the subvarieties of 3 E L from the last slide. The space of sections of 3 E L is naturally isomorphic to 4 C 8 Given a section s: P 7 3 E L, we define 3 degeneracy loci Z i = {x P 7 s(x) X i }. For a generic s 4 C 8, Z 4 = K(C), Kummer variety for a plane quartic curve C, Z 1 = Q(C) is its Coble quartic hypersurface, and Z 7 = Sing(K(C)) = 64 points 23/24

Arithmetic considerations If we take a section of the form s = c 1 h 1 + +c 7 h 7, then the degeneracy locus construction for the Coble quartic agrees with the parametrization given by the Macdonald representation. This is mostly satisfactory, but elements like above are semisimple, so from the point of view of degenerations of Kummer varieties, or plane quartics, we are missing a lot of stuff (like nilpotent vectors). The GIT quotients of 4 C 8 and h are the same, but the stack quotients are very different! Also, the fact that every semisimple element has the above form only works over an algebraically closed field (e.g., a rational matrix need not be diagonalizable over Q, but could be over C). For arithmetic questions, it is better to work over Q or even Z, and then we would prefer 4 Z 8 over the Cartan subspace. 24/24