Exoplanets at the E-ELT era

Similar documents
Exoplanetary Science with the E-ELT

E-ELT s View of Exoplanetary Atmospheres

A New Era with E-ELT Drivers for circumstellar environment studies

Synergies between E-ELT and space instrumentation for extrasolar planet science

Exoplanet Science with E-ELT/METIS

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

Direct imaging characterisation of (exo-) planets with METIS

Studying Exoplanet Atmospheres with TMT. Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA)

Science of extrasolar Planets A focused update

Revealing the evolution of disks at au from high-resolution IR spectroscopy

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation

Adam Burrows, Princeton April 7, KITP Public Lecture

Red dwarfs and the nearest terrestrial planets

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Exoplanet atmospheres

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Design Reference Mission. DRM approach

Jean- Luc Beuzit and David Mouillet

Direct imaging of extra-solar planets

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

E-ELT Programme; ESO Instrumentation Project Office Ground-based Instrumentation for VLT, VLTI and E-ELT

Exoplanets in the mid-ir with E-ELT & METIS

Prospects for ground-based characterization of Proxima Centauri b

Science Olympiad Astronomy C Division Event National Exam

The Fast Spin of β Pic b

DIRECT PLANET DETECTION

Internal structure and atmospheres of planets

The SPIRou RV surveys. Étienne Artigau for the SPIRou collaboration

II Planet Finding.

Characterization of Exoplanets in the mid-ir with JWST & ELTs

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Synergies between and E-ELT

SPICA Science for Transiting Planetary Systems

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

Exoplanet atmosphere Spectroscopy present observations and expectations for the ELT

Exo-Planetary atmospheres and host stars. G. Micela INAF Osservatorio Astronomico di Palermo

EPICS: A planet hunter for the European ELT

Detection and characterization of exoplanets from space

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

Science with EPICS, the E-ELT planet finder

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Characterizing Exoplanets and Brown Dwarfs With JWST

Exoplanet Science in the 2020s

CHARACTERIZING EXOPLANETS SATELLITE

The Large UV Optical IR survey telescope. Debra Fischer

Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs

Looking to the Future: the rest of the planets

Polarimetry and spectral imaging of mature Jupiter and super Earth SEE COAST

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

The Austrian contribution to the European Extremely Large Telescope

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

Direction - Conférence. The European Extremely Large Telescope

E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS

PLATO Follow-up. Questions addressed. Importance of the follow-up. Importance of the follow-up. Organisa(on*&*Progress*Report

ALMA Observations of the Disk Wind Source AS 205

CASE/ARIEL & FINESSE Briefing

Characterization of Transiting Planet Atmospheres

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

E-ELT S VIEW OF CIRCUMSTELLAR ENVIRONMENTS

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey

MIRI, METIS and the exoplanets. P.O. Lagage CEA Saclay

Investigating the origin of stellar jets with SPHERE

Finding bio-signatures on extrasolar planets, how close are we?

PProbing New Planet Views Forming on Disks: INTRODUCTION! Contributions from Spitzer and Ground-based Facilities. Joan Najita (NOAO)

The Future of Exoplanet Science from Space

Ongoing and upcoming observations and their implication for exoplanet and brown dwarf studies.

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg

Searching for Other Worlds: The Methods

10x Effective area JVLA, ALMA 10x Resolution w. 50% to few km + 50% to 300km Frequency range: 1 50, GHz

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Direct imaging and characterization of habitable planets with Colossus

Recent advances in understanding planet formation

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

2010 Pearson Education, Inc.

Planet Detection! Estimating f p!

SPIRou status. and the SPIRou team.

The Physics of Exoplanets

Exoplanet science with ground based ELTs

Extra Solar Planetary Systems and Habitable Zones

Scientific context in 2025+

Extreme AO Coronagraph Science with GPI. James R. Graham UC, Berkeley

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge

Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010

Young Solar-like Systems

Perspectives for Future Groundbased Telescopes. Astronomy

HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST

Searching for Other Worlds

Extrasolar Planets = Exoplanets III.

Key Science Opportunities from Airships in Planetary & Small Bodies Science. Spitzer Keck Herschel

Direct Imaging of Exoplanets

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method

2 More Science Cases, Summary & Close

Subaru-Australian collaboration on Technologies for Habitable Planet Spectroscopy

Transcription:

Towards Other Earths II: The Star Planet Connection, Porto, September 15-19 th, 2014 Exoplanets at the E-ELT era Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France ESO-Project Science Team, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortia

Outline Exoplanets at the E-ELT era I- The E-ELT project Telescope & context Instrumentation road map II- Exoplanetary science 2.1 Study of planet-forming regions 2.2 Exoplanetary system characterization (Architecture, Formation, Atmosphere)

The E-ELT Project The Telescope 39-m class telescope: largest opticalinfrared telescope in the world. (GMT = 25m; TMT = 30m) Novel 5 mirrors design Segmented-primary (M1) 800 segments, 1.4m size Adaptive assisted telescope M4 adaptive mirror, 5000 actuators Diffraction limited performance: 12mas@K-band; 7 arcmin patrol FoV Mid-latitude site (Amazones/Chile). Fast instrument changes.

The E-ELT Project E-ELT & other competitive projects Discoveries by opening a new parameter space Increased Sensitivity Spatial resolution (10 mas scale) 50m2 400m2 600m2 1200m2 (JWST: 25m2) 2 µm 50mas 18mas 14mas 10mas (JWST: 68mas)

The E-ELT Project Timeline: current/future missions 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP, Spirou, Carmenes Space: Spitzer, Herschel, Kepler, CoRoT - VLT & VLTI 2 nd & 3 rd generation K-MOS, SPHERE, MUSE, CRIRES+, ESPRESSO, GRAVITY, MATISSE - ALMA (ACA) - GAIA - Cheops - TESS - SKA - JWST - PLATO - WFIRST - TMT - GMT - E-ELT

The E-ELT Project Instrument Roadmap Instruments - First Light E-CAM 2024 E-IFU 2024 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2025 SCAO LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2026/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2026/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2030/2032 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry

The E-ELT Project Instrument Roadmap 1st Light Instruments Instruments - First Light E-CAM 2024 E-IFU 2024 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2025 SCAO LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2026/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2026/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2030/2032 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

The E-ELT Project Instrument Roadmap 2 nd Pool Instruments Instruments - First Light E-CAM 2024 E-IFU 2024 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2025 SCAO LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2026/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry? E-MOS - 2026/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2030/2032 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

The E-ELT Project Instrument Roadmap XAO Instrument Instruments - First Light E-CAM 2024 E-IFU 2024 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2025 SCAO LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2026/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2026/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2030/2032 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

The E-ELT Project Instrument Roadmap Various AO Flavors Instruments - First Light E-CAM 2024 E-IFU 2024 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2025 SCAO LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2025/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2025/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2030/2032 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

The E-ELT Project Instrument Roadmap Science Priority / Exoplanets Instruments - First Light E-CAM 2024 E-IFU 2024 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2025 SCAO LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2026/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2026/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2030/2032 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry Low Medium High

Outline Exoplanets at the E-ELT era I- The E-ELT project Telescope & context Instrumentation road map II- Exoplanetary science 2.1 Study of planet-forming regions 2.2 Exoplanetary system characterization (Architecture, Formation, Atmosphere)

2.1 Planet-forming regions. Star/disk Evolution o Accretion, Mass loss & Magnetic fields. Disk Structure & Dynamics o Gas & Dust components. Composition & Chemistry: o Water & Organics. Planetary Formation & Observation o Initial conditions. Planets/Disk interactions Key Scientific Questions Fomalhaut ALMA/HST Bowler et al. 12

2.1 Planet-forming regions Accessing the AU to the sub-au scale 1 L sun @100 pc snow line Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr E-ELT : 10 mas x 100pc = 1 AU E-MIDIR E-IFU, E-HIRES VLT/CRIRES ALMA

2.1 Planet-forming regions Accessing the AU to the sub-au scale 1 L sun @100 pc Co-rotation radius Magnetospheric radius dust sublimation crystallization snow line Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU Spectro-astrometry E-MIDIR E-IFU, E-HIRES VLT/CRIRES ALMA

2.1 Planet-forming regions E-IFU, E-HIRES & E-MIDIR Geometry of Accretion Channels Inner Disk Properties (Warp, asymmetries ) Role of Magnetic Fields (Config., Reconnection) Jet L aunching Zone, Stellar & Disk Winds (0.01 AU) Star/Disk interactions MHD star disk simulations R/Ro Spectro-astrometry E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro Zanni & Ferreira 09

2.1 Planet-forming regions Asymmetries/Spirals in proto-planetary disks Dusty Disk Structures E-CAM, MIDIR E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mjy/as2 at 0.1-0.2 (10 20 AU) ELT-MIR very competitive with JWST Grain differentiation with size Pressure Bump and dust trap Hot spot/proto-planets

2.1 Planet-forming regions Dusty Disk Structures Asymmetries/Spirals in proto-planetary disks E-CAM, MIDIR E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mjy/as2 at 0.1-0.2 (10 20 AU) ELT-MIR very competitive with JWST Grain differentiation with size Pressure Bump and dust trap Hot spot/proto-planets

2.1 Planet-forming regions Dusty Disk Structures Asymmetries/Spirals in proto-planetary disks E-CAM, MIDIR E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mjy/as2 at 0.1-0.2 (10 20 AU) ELT-MIR very competitive with JWST Grain differentiation with size Pressure Bump and dust trap Hot spot/proto-planets

2.1 Planet-forming regions Dusty Disk Structures Asymmetries/Spirals in proto-planetary disks E-CAM, MIDIR E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mjy/as2 at 0.1-0.2 (10 20 AU) ELT-MIR very competitive with JWST Grain differentiation with size Pressure Bump and dust trap Hot spot/proto-planets

E-MIDIR 2.1 Planet-forming regions Gas Distribution & Dynamics Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr) Gap at 18 AU (sub-mm continuum emission Brown e al. 07) E-ELT-MIDIR simulations of 12 CO line emission at 4.7µm of SR21. o Left: Continuum subtracted and velocity channel co-added o Right: Velocity map with a resolving power of 100 000 (3 km/s) 32 AU

E-MIDIR 2.1 Planet-forming regions Proto-planet direct detection Proto-planetary disk in young SFRs (solar-type star, 150pc) 10 M Jup protoplanet at 30 AU surrounded by a circumplanetary disk E--MIDIR simulations of 12 CO line emission at 4.7µm, continuum subtracted

2.1 Planet-forming regions Gas Composition & Chemistry Water & Organics Distribution and Dynamics Disk cooling & Planetesimals formation Organic/Prebiotic chemistry (CH4, C2H2, HCN ) Isotopic Fractionation Water Transfer to Terrestrial Planets E-MIDIR. Keck-NIRSPEC. high HRS (R = 25 000) in L-band.. Detection of H20 and OH radicals MIR lines. Hot (800K) water from the inner AUs DR Tau, AS 205 N; Salyk et al. 08

2.2 Exoplanets Characterization Artist s View ESO-PR-1106

2.2 Exoplanets Characterization. Architecture of Planetary Systems o Frequent of GP/Telluric planets o Dynamical evolution/stability. Formation/Internal Evolution of Young Planets o Accretion history/cooling. Physics of Planetary Atmospheres o Composition/Chemistry o Bio-Signatures Discovery Key Scientific Questions

2.2 Exoplanets Characterization Architecture & Formation/Evolution E-CAM, IFU, MIDIR, PCS Exoplanets, current view (2014)

2.2 Exoplanets Characterization Architecture & Formation/Evolution E-CAM, IFU, MIDIR, PCS At E-ELT 1 st Lights (2024):. RV, Astro., Transit & DI surveys over?. Complete census of nearby planetary systems? GAIA TESS, CHEOPS ESPRESSO SPHERE

2.2 Exoplanets Characterization Architecture & Formation/Evolution E-CAM, IFU, MIDIR, PCS At E-ELT 1 st Lights (2024):. RV, Astro., Transit & DI surveys over?. Complete census of nearby planetary systems? E-ELT High-contrast Imaging (CAM, IFU, MIDIR, PCS) Overlap btw techniques Planetary freq. at all Periods Global view of planetary systems architecture Dominant formation mechanisms Dynamical evolution & stability GAIA TESS, CHEOPS ESPRESSO PCS SPHERE

2.2 Exoplanets Characterization Young Jupiters Properties/History E-CAM, IFU, MIDIR, PCS Physics of Giant Planets Observables: Luminosity Orbital properties: a, e, i, Complementarity RV, Astr > Access Dynamical Mass Bpic; Lagrange et al. 09, 10, Chauvin et al. 12 Bonnefoy et al. 14

2.2 Exoplanets Characterization E-CAM, IFU, MIDIR, PCS Physics of Giant Planets Observables: Luminosity Orbital properties: a, e, i, Complementarity RV, Astr > Access Dynamical Mass Formation/Cooling Evolution Lum. Mass parameter space Calibrate model predictions Gas Accretion History Presence of a core Young Jupiters Properties/History Accretion Shock Cold-start Mordasini et al. 12 No Accretion Shock Hot start

2.2 Exoplanets Characterization Physics of the Planetary Atmosphere Wide orbit self-lum. planets High-contrast LRS High-contrast + HDS Close-in Irradiated planets Transmission/Eclipse LRS HDS

E-IFU, MIDIR, PCS 2.2 Exoplanets Characterization Physics of the Atmosphere i/ High-Contrast Low-Resolution Spectroscopy - Contrast Goal: 10-6 (50mas) to 10-9 (20mas) - Targets: M-dwarfs, young stars - Emitted (E-IFU, MIDIR) and Reflected (E-PCS) light of giant icy planets (Super-Earths?) - Broad molecular absorptions: H2O, CO, CH4, NH3, CO2

2.2 Exoplanets Characterization Physics of the Atmosphere i/ High-Contrast Low-Resolution Spectroscopy - Contrast Goal: 10-6 (50mas) to 10-9 (20mas) - Targets: M-dwarfs, young stars - Emitted (E-IFU, MIDIR) and Reflected (E-PCS) light of giant icy planets (Super-Earths?) - Broad molecular absorptions: H2O, CO, CH4, NH3, CO2 E-IFU, MIDIR, PCS Beta Pic b GPI and SPHERE Observations in J-band (Res = 50) 8 13 M Jup planet, 9 AU; T eff = 1650 +- 150K, log(g) = 4.0±0.5 and R = 1.3+-0.2 R jup H2O, FeH absorptions (Bonnefoy et al. 14)

E-MOS 2.2 Exoplanets Characterization Physics of the Atmosphere ii/ MOS Transit Medium-Resolution Spectroscopy - Photometric accuracy Goal: 10-6 - Targets: M dwarfs - Search for bio-signatures to telluric planets - Complementarity to JWST in visible: Presence of Haze

2.2 Exoplanets Characterization Physics of the Atmosphere ii/ MOS Transit Medium-Resolution Spectroscopy - Photometric accuracy Goal: 10-6 - Targets: M dwarfs - Search for bio-signatures to telluric planets - Complementarity to JWST in visible: Presence of Haze GJ3470 b Keck/MOSFIRE; FoV = 6 x 6 ; Reference stars; Spectral range= 2.0 2.4 µm; Resolution = 3500 (OH lines); 10-4 photometric precision; Hot Neptune Transmission spectrum looks flat! Suggests hazes and/or disequilibrium chemistry E-MOS (Crossfield et al. 13)

2.2 Exoplanets Characterization Physics of the Atmosphere iii/ High-Dispersed Spectroscopy - Contrast: 10-5 - Targets: bright stars with close-in planets (>40) - Search for molecular absorptions of CO, H2O, CH4, NH3 - Mass, inclination, thermal inversion, C/O ratio, atmosphere circulation rotation E-HIRES, MIDIR HD179949 b, Non-transiting planets VLT/CRIRES observations, Resolution = 100 000; Spectral coverage = 2.29-2.35 µm Dayside seen in CO, H2O Kp = 142.8 ± 3.4 km/s Mass = 0.98 ± 0.04 MJup Incl = 67.7 ± 4.3 deg (Brogi et al. 14)

2.2 Exoplanets Characterization Physics of the Atmosphere E-MIDIR & new PCS? iv/ XAO High-Contrast + High-Dispersed Spectroscopy Powerful technique, capable to characterize rocky planets in HZ? Reflected light (from 10-4 to 10-9 contrast); Search for O2 and bio-signatures Snellen et al. 13 and Talk

2.2 Exoplanets Characterization Physics of the Atmosphere E-MIDIR & new PCS? iv/ XAO High-Contrast + High-Dispersed Spectroscopy Powerful technique, capable to characterize rocky planets in HZ? Reflected light (from 10-4 to 10-9 contrast); Search for O2 and bio-signatures Doppler imaging mapping of Exoplanets: Cloud/Molecular Coverage Luhman 16 B, 2 pc, Rotation 4.9hrs spectroscopic variability (Crossfield et al. 14)

Conclusions The E-ELT project > Unique Spatial resolution & sensitivity > Offering a versatile instrumentation (wavelengths coverage, modes, spatial/spectral resolution ) > Will count on new discoveries (ALMA, SPHERE, GPI, GAIA, TESS...) > Mostly aimed at Characterizing, but not only Exoplanetary science > Observing planet-forming regions (0.01 10 AU scale) > Initial conditions for planetary formation (Disk Structure, Composition & Chemistry) > Overlap btw observing techniques Architecture of planetary systems (Global view) Physics of Young Jupiters (Formation, Accretion) > Atmospheres Giant/Icy to Sper-Earths, T/P structure, composition, C/O ratio, cloud coverage & variab. Path toward characterization of exo-earths atmospheres

Thank you Cerro Amazones, Sep 12th, 2014

2.2 Exoplanets Characterization E-HIRES, E-MIDIR, E-PCS Planetary Atmospheres Reflected, Transmitted or Emitted light of Exoplanets Strongly or non-strongly irradiated planets Physics of Planetary Atmospheres (Giant, Exo-Neptunes to Super-Earths) - Geometric Albedos - Chemical Composition (H20, CH4, CO, CO2, NH3 ) - Atmosphere s Dynamics. Inversion,. Vertical Mixing,. Circulation,. Evaporation, Imprints of Formation Mechanisms? No Thermal Inversion Thermal inversion Knutson et al. 09 Spitzer

2.2 Exoplanets Characterization Physics of the Atmosphere iii/ High-Dispersed Spectroscopy