Experimental Modal Analysis (EMA) on a vibration cube fixture M. Sc. Emanuel Malek Eindhoven November 2017

Similar documents
e jωt = cos(ωt) + jsin(ωt),

Precision Machine Design

Improving the Accuracy of Dynamic Vibration Fatigue Simulation

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response

PROJECT 1 DYNAMICS OF MACHINES 41514

Direct Fatigue Damage Spectrum Calculation for a Shock Response Spectrum

DYNAMICS OF MACHINERY 41514

Experimental Modal Analysis

On the force drop off phenomenon in shaker testing in experimental modal analysis

Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK

Experimental Modal Analysis

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech

COMPLEX MODULUS AND DAMPING MEASUREMENTS USING RESONANT AND NON-RESONANT METHODS

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE

EXPERIMENTAL MODAL ANALYSIS (EMA) OF A SPINDLE BRACKET OF A MINIATURIZED MACHINE TOOL (MMT)

Advanced Modal Analysis Techniques. Advanced Modal Seminar Brasil, Februari 2017

Dynamics of structures

Dynamic characterization of engine mount at different orientation using sine swept frequency test

Review of modal testing

ME scope Application Note 28

Chapter 2 Lab Exercises for a Course on Mechanical Vibrations

Prob. 1 SDOF Structure subjected to Ground Shaking

NV-TECH-Design: Scalable Automatic Modal Hammer (SAM) for structural dynamics testing

GROUND VIBRATION TEST ON ULTRALIGHT PLANES

Dynamics of structures

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural changes detection with use of operational spatial filter

Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis

Structural Dynamics Modification and Modal Modeling

INVESTIGATION OF IMPACT HAMMER CALIBRATIONS

MODAL SPACE. (in our own little world)

Francisco Paulo Lépore Neto. Marcelo Braga dos Santos. Introduction 1. Nomenclature. Experimental Apparatus and Formulation

ABSTRACT Modal parameters obtained from modal testing (such as modal vectors, natural frequencies, and damping ratios) have been used extensively in s

Acoustics-An An Overview. Lecture 1. Vibro-Acoustics. What? Why? How? Lecture 1

Vibration Testing. Typically either instrumented hammers or shakers are used.

Dynamic Behaviour of the Rubber Isolator Under Heavy Static Loads in Aerospace Systems

Comparison of Path Rank Ordering Schemes for Structure-Borne Noise

SPACECRAFT EQUIPMENT VIBRATION QUALIFICATION TESTING APPLICABILITY AND ADVANTAGES OF NOTCHING

Francisco Paulo Lépore Neto. Marcelo Braga dos Santos. Introduction 1. Nomenclature. Experimental Apparatus and Formulation

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Wire rope springs for passive vibration control of a light steel structure

Introduction to Vibration. Professor Mike Brennan

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

2.0 Theory. 2.1 Ground Vibration Test

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 29. Shock Response Spectrum Synthesis via Wavelets

TRANSFORMER CORE NOISE MEASUREMENT AND PREDICTION

Why You Can t Ignore Those Vibration Fixture Resonances Peter Avitabile, University of Massachusetts Lowell, Lowell, Massachusetts

Application of laser vibrometer for the study of loudspeaker dynamics

Identification of crack parameters in a cantilever beam using experimental and wavelet analysis

MAE106 Laboratory Exercises Lab # 6 - Vibrating systems

SHOCK RESPONSE SPECTRUM ANALYSIS VIA THE FINITE ELEMENT METHOD Revision C

Preliminary Examination - Dynamics

Tutorial on Nonlinear Modal Analysis of Mechanical Systems

FREE-FREE DYNAMICS OF SOME VIBRATION ISOLATORS

Preliminary Examination in Dynamics

A STUDY OF THE ACCURACY OF GROUND VIBRATION TEST DATA USING A REPLICA OF THE GARTEUR SM-AG19 TESTBED STRUCTURE

Vibration modelling of machine tool structures

Random Eigenvalue Problems in Structural Dynamics: An Experimental Investigation

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

ASTELAB Fatigue damage calculation to compare 1D with 3D vibration test loads

Measurement Techniques for Engineers. Motion and Vibration Measurement

DEVELOPMENT OF A NOVEL ACTIVE ISOLATION CONCEPT 1

Curve Fitting Analytical Mode Shapes to Experimental Data

EE C245 ME C218 Introduction to MEMS Design Fall 2012

EXPERIMENTAL EVALUATION OF THE MODAL DAMPING OF AUTOMOTIVE COMPONENTS WITH DIFFERENT BOUNDARY CONDITIONS

Vibration Analysis and Monitoring

SPERIMENTAZIONE DI STRUTTURE AEROSPAZIALI TESTING OF AEROSPACE STRUCTURES

Chapter 7 Vibration Measurement and Applications

THE subject of the analysis is system composed by

Chapter 14: Periodic motion

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Non-linear Modal Behaviour in Cantilever Beam Structures

Optimized PSD Envelope for Nonstationary Vibration Revision A

A Guide to linear dynamic analysis with Damping

Soil-Structure-Interaction: Analysis through measurements

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions

AN ALTERNATIVE APPROACH TO SOLVE THE RAILWAY MAINTENANCE PROBLEM

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION

Dynamics of Structures

Application of a novel method to identify multi-axis joint properties

OPTI 521, Optomechanical Design, Technical Paper Reviews, Dr. Jim Burge, 2011

Vibration Measurements Vibration Instrumentation. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 11 Fall 2011

Experimental characterization of dry friction isolators for shock vibration isolation

Dynamic Substructuring of an A600 Wind Turbine

EXPERIMENTAL MODAL ANALYSIS OF A SCALED CAR BODY FOR METRO VEHICLES

Development of a Rubber for a Tuned Mass Damper for Rail Vibration

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

MOOC QP Set 2 Principles of Vibration Control

Expedient Modeling of Ball Screw Feed Drives

Estimation of Rotational FRFs via Cancellation Methods

Nonlinear Considerations in Energy Harvesting

Vibrations of Single Degree of Freedom Systems

ROBUST CONTROL OF MULTI-AXIS SHAKING SYSTEM USING µ-synthesis

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Resonant Column and Torsional Cyclic Shear System

SIMULATION AND TESTING OF A 6-STORY STRUCTURE INCORPORATING A COUPLED TWO MASS NONLINEAR ENERGY SINK. Sean Hubbard Dept. of Aerospace Engineering

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV

Transcription:

Experimental Modal Analysis (EMA) on a vibration cube fixture M. Sc. Emanuel Malek Eindhoven November 207 Test and Measurement Solutions

Content Introduction Basics Why EMA? Preparation and execution Testing variants Definition of measuring points/ Geometry creation Excitation and response Test results Variant (elastic suspension) Variant 2 (shaker armature - impulse) FRF Variant vs. 2 Variant 3 (shaker armature - sweep) Summary & conclusion

Introduction - Basics SDOF System y(t) Idealized systems, e.g. o Armature (shaker) m o Piezo - Accelerometer One mass m [kg], one spring c [N/m] Owns one natural frequency (eigenfrequency) c x(t) o ω 0 = c m f 0 = ω 0 2π = c m 2π System prefers to moves at natural frequencies Transmissibility function (amplification function) G(f) = Response Excitation o behavior of the movement regarding to the excitation in frequency domain amplification, isolation (attenuation) = y (f) x (f)

Introduction - Basics G(f) equivalent f 0 amplification f 3 areas of transmissibility function Equivalent area G(f) Amplification G(f)>> Isolation G(f)< Resonance if f = f 0

Introduction - Basics G(f) f 0 equivalent amplification isolation f 3 areas of transmissibility function Equivalent area G(f) Amplification G(f)>> Isolation G(f)< Isolation if f > f 0

Introduction - Basics Damping dissipates energy Briefer decay time Damping coefficient d [ kg s resp. N s m ] m Softly damped system c d y(t) G(f) y(t) Greatly damped system G(f)

Introduction - Basics G(f) m c d f 0, G(f) f m 2 c 2 d 2 f 0,2 f

Introduction - Basics Force excited two-mass spring damper system Two natural frequencies Two natural modes Resonance followed by anti resonance (Drivepoint) FRF (Frequency Response Function) - Ratio of acceleration, velocity & displacement to force x(t) m F(t) c d FRF(f) m 2 c 2 d 2 f 0, f 0,2 f

ome.com Introduction - Why EMA? Why modal analysis of fixtures and test sockets? Determine natural frequencies/ damping o Determine critical frequency range o Customizing test definitions o Notching / forcelimitation o Design features Determine natural modes o Identification of suitable positions for control sensors, DUT o Design features FEM validation [Tira]

ome.com Preparation and execution - Testing variants Test object: Cube fixture Variant : Elastic suspension Excitation: Impulse Variant 2: Shaker armature Excitation: Impulse Variant 3: Shaker armature Excitation : Sine sweep (0 2500 Hz)

ome.com Preparation and execution - Testing variants Approximation system for cube fixture on shaker armature Complex oscillation system cube fixture o Several mass and spring elements o Structure and system stiffness/damping Large number of interactions y(t) Screw connection Armature F(t) Suspension of shaker armature

ome.com Preparation and execution - Definition of measuring points/ Geometry creation Test object: Cube fixture Symmetrical Mass approx. 58 kg Vorüberlegung bzw. Positionsmessung Measuring points: 9 Accelerometer per face 45 Measuring points Merging of corner points (m+p Analyzer) 3-Dimensionale dynamic m+p Analyzer Messpunkt-Geometrie Excel Table, STL-Format z y x

ome.com Preparation and execution - Excitation & response Impulse excitation: 3 Drivepoints F x in +x, F y in +y, F z in z Impulse hammer with hard plastic tip (0,23 mv/n) roving Impulse response: Accelerometer (00 mv/g) Measuring direction of points on Surface: : -y, 2: +y, 3: -x, 4: +x, 5:+z fixed F z F x F y z y x z 5 3 2 y x 4

ome.com Preparation and execution - Excitation & response Impulse excitaion: Hammer () Force transducer (2) Additional mass (3) Hammer tip (4) Mass of hammer reaches from a few grams up to several Kilograms Excitation frequencies: From 00 Hz (Heavy Hammer, soft tip) To more than 50 khz (Light Hammer, hard tip). 2 4 3 [PCB] [B&K]

ome.com Preparation and execution - Excitation & response Sine-Sweep-Excitation: F z in +z (Cube on shaker armature) Control channel delivers excitation signal 0-2500 Hz g constant Octave/min Impulse response: Accelerometers (00 mv/g) Measuring direction of points on Surface: : -y, 2: +y, 3: -x, 4: +x, 5:+z fix 5 3 2 4 z y F z Control channel z y Control channel x x

ome.com Preparation and execution - Excitation & response Monitoring during impulse hammer test FRF (Frequency Response Function [g/n]) + Coherence of Drivepoint Display: Excitation point Time signal of excitation and response PSD (Power spectrum density) of hammer impulse

ome.com Preparation and execution - Excitation & response, evaluable frequency range db Ref (Rms) p N2/Hz Measured signals: Time signals, PSD, FRF, Coherence Evaluable frequency range for modal parameters: f min for elastic suspension 0,8 Hz (longer time window) f min for cube on shaker armature,6 Hz (shorter time window) f max depends on impulse decrease (0-20 db difference) Additional considering of coherence 80 Bsp. PSD of hammer impulse in Y (elastic suspension) XAxis: YAxis: Hz db 60 2-0 db X 78.25m 2.3484k 3.742k -20 db Y: 60.223 50.223 40.230 40 3 20 0 k 2k 3k 4k 5k 2,35 khz 3,8 khz

db Ref (Rms) p N2/Hz Log g/n Amplitude Real N Real g Test results - Test variant (elast. suspension), Impact in +X Excitation: Force impulse in time domain 4 Time record(wuerfel.3_3.x) 3 20 5 Response: Accel. in time domain Time record(wuerfel.3_3.x-) 2 0 5 0 0 - -5-2 -0-3 -4 0 00m 200m 250m Time - s -5-20 0 00m 200m 250m Time - s Excitation: Force impulse in frequency domain FRF and coherence function 80 PSD(Wuerfel.3_3.X) k FRF(Wuerfel.3_3.X-,Wuerfel.3_3.X) Coherence(Wuerfel.3_3.X-,Wuerfel.3_3.X) 00 800m 0 600m 60 400m 00m 200m 40 0 k 2k 3k 0m 0 0 k 2k 3k

Log g/n Test results - Test variant (elast. suspension), Impact in +X. Mode: Torsional mode (compare excitation in Y, Z) Frequency: 696,3 Hz, Damping: 0,57%; Mode Indicator Function (MIF): 9,2% k XAxis: YAxis: Hz g/n 00 Y: Y:2 X:.696k 5.92 53.37 0 00m 0m 600 k 2k 3k 3.3k

Log g/n Test results - Test variant (elast. suspension), Impact in +X 2. Mode: Shear mode (compare excitation in Z) Frequency: 255 Hz, Damping: 0,29%; Mode Indicator Function (MIF): 70% k XAxis: YAxis: Hz g/n 00 Y: Y:2 X: 2.547k 48.29 484.46 0 00m 0m 600 k 2k 3k 3.3k

Log g/n Test results - Test variant (elast. suspension), Impact in +X 4. Mode (compare excitation in Y,Z) Frequency: 2520 Hz, Damping: 0,38%; Mode Indicator Function (MIF): 86,3% k XAxis: YAxis: Hz g/n 00 Y: Y:2 X: 2.5203k 35.94 37.4 0 00m 0m 600 k 2k 3k 3.3k

Log g/n Test results - Test variant (elast. suspension), Impact in +Y. Mode: Torsional mode (compare excitation in X,Z) Frequency: 696 Hz, Damping: 0,58%; Mode Indicator Function (MIF): 93,9% k XAxis: YAxis: Hz g/n 00 Y: Y:2 X:.696k 426.7 432.57 0 00m 0m 400 k 2k 3.k

Log g/n Test results - Test variant (elast. suspension), Impact in +Y 3. Mode: Shear mode (compare excitation in Z) Frequency: 2277,3 Hz, Damping: 0,23%; Mode Indicator Function (MIF): 9,2% k XAxis: YAxis: Hz g/n 00 Y: Y:2 X: 2.278k 249.54 82.45 0 00m 0m 400 k 2k 3.k

Log g/n Test results - Test variant (elast. suspension), Impact in +Y 4. Mode (compare excitation in X,Z) Frequency: 252,5 Hz, Damping: 0,42%; Mode Indicator Function (MIF): 80,2% k XAxis: YAxis: Hz g/n 00 Y: Y:2 X: 2.5227k 59.777 47.034 0 00m 0m 400 k 2k 3.k

Log g/n Test results - Test variant (elast. suspension), Impact in -Z. Mode: Torsional mode (compare excitation in X,Y) Frequency: 697, Hz, Damping: 0,53%; Mode Indicator Function (MIF): 7,8% 0k k FRF(Wuerfel.5_.Z,Wuerfel.5_.Z-) Synthesized FRF(Wuerfel.5_.Z,Wuerfel.5_.Z-) XAxis: YAxis: Y: Y:2 Hz g/n X:.6969k 59.747 49.006 00 0 00m 0m 600 k 2k 2.8k

Log g/n Test results - Test variant (elast. suspension), Impact in -Z 2. Mode: Shear mode (compare excitation in X,Y) Frequency: 256,2 Hz, Damping: 0,28%; Mode Indicator Function (MIF): 82,6% 0k k FRF(Wuerfel.5_.Z,Wuerfel.5_.Z-) Synthesized FRF(Wuerfel.5_.Z,Wuerfel.5_.Z-) XAxis: YAxis: Y: Y:2 Hz g/n X: 2.570k 379.86 256.72 00 0 00m 0m 600 k 2k 2.8k

Log g/n Test results - Test variant (elast. suspension), Impact in -Z 3. Mode: Shear mode (compare excitation in X,Y) Frequency: 2278,4 Hz, Damping: 0,32%; Mode Indicator Function (MIF): 82,8% 0k k FRF(Wuerfel.5_.Z,Wuerfel.5_.Z-) Synthesized FRF(Wuerfel.5_.Z,Wuerfel.5_.Z-) XAxis: YAxis: Y: Y:2 Hz g/n X: 2.2797k 538.7 497.62 00 0 00m 0m 600 k 2k 2.8k

Test results - Test variant (elast. suspension), Comparision Excitation +X Excitation +Y Excitation -Z Natural freq. Damping MFI Natural freq. Damping MFI Natural freq. Damping MFI.Mode 696,3 Hz 0,57% 9,2% 696 Hz 0,58% 93,9% 697, Hz 0,53% 7,8% 2.Mode 255 Hz 0,29% 70,0% --- --- --- 256,2 Hz 0,28% 82,6% 3.Mode --- --- --- 2277,3 Hz 0,23% 9,2% 2278,4 Hz 0,32% 82,8% 4.Mode 2520 Hz 0,38% 86,3% 252,5 Hz 0,42% 80,2% 258,3 Hz 0,47% 94,3% 5.Mode 2905 Hz,6% 88,8% 292,6 Hz 0,23% 9,3% --- --- ---

Log g/n Test results - Test variant 2 (shaker armature),impact in -Z 2. Mode (not comparable with elastic suspension): Frequency: 720 Hz, Damping: 2,7%; Mode Indicator Function (MIF): 80,3% k XAxis: YAxis: Hz g/n Y: Y:2 X: 720.00 37.307 30.0 00 0 00m 320 k 2k 2.4k

Log g/n Test results - Test variant 2 (shaker armature),impact in -Z 4. Mode: Torsional mode (compare elastic suspension) Frequency: 455 Hz, Damping: 0,94%; Mode Indicator Function (MIF): 85,9% k XAxis: YAxis: Hz g/n Y: Y:2 X:.4550k 4.82 33.485 00 0 00m 320 k 2k 2.4k

Log g/n Test results - Test variant 2 (shaker armature),impact in -Z 5. Mode: Frequency: 680 Hz, Damping: 2,28%; Mode Indicator Function (MIF): 75,5% k XAxis: YAxis: Hz g/n Y: Y:2 X:.6800k 88.254 8.246 00 0 00m 320 k 2k 2.4k

Log g/n Test results - Test variant 2 (shaker armature),impact in -Z 6. Mode: Frequency: 745 Hz, Damping:,44%; Mode Indicator Function (MIF): 89,5% k XAxis: YAxis: Hz g/n Y: Y:2 X:.7430k 79.955 82.60 00 0 00m 320 k 2k 2.4k

Log g/n Test results - FRF Test variant vs. 2, Impact in -Z Additional mass and coupling create additional constraints Increase of oscillating system mass (armature coil) Natural frequencies move downwards Additional mode shapes 0k k FRF-elast. Aufhängung in Z FRF-Armatur in Z 4. Mode 00 0 00m. Mode 0m 0 k 2k 3k

Log g/n Test results - FRF Test variant vs. 2 Additional mass and coupling create additional constraints Increase of oscillating system mass (armature coil) Natural frequencies move downwards Additional mode shapes 0k k 00 FRF-elast. Aufhängung in Z FRF-elast. Aufhängung in Y FRF-elast. Aufhängung in X FRF-Armatur in Z FRF-Armatur in Y FRF-Armatur in X 0 00m 0m 0 k 2k 3k

db Ref (Rms) 0.97n g Test results - Test variant 3 (shaker armature), Sine sweep in +Z. Operating deflection shape: Frequency: 700 Hz, Damping: 2,7%; ODS (Operating Deflecting Shape) Wuerfel_2._.Z+ 2 80 60 40 20 0 k 2k 2.5k

db Ref (Rms) 0.97n g Test results - Test variant 3 (shaker armature), Sine sweep in +Z 2. Operating deflection shape: Frequency: 50 Hz, Damping:,2%; ODS (Operating Deflecting Shape) Wuerfel_2._.Z+ 2 80 60 40 20 0 k 2k 2.5k

db Ref (Rms) 0.97n g Test results - Test variant 3 (shaker armature), Sine sweep in +Z 3. Operating deflection shape: Frequency: 460 Hz, Damping: 0,65%; ODS (Operating Deflecting Shape) Wuerfel_2._.Z+ 2 80 60 40 20 0 k 2k 2.5k

Log g rms Test results - Test variant 3 (shaker armature), Sine sweep in +Z Response spectrum of measuring point (x,y,z) Max. lateral acceleration in y: 0,7 g (rms), x: 0,6 g (rms) Max. vertical acceleration z: 5 g (rms) at 55 Hz z y 00 0 Wuerfel_2._.Y- Wuerfel_2._.X- Wuerfel_2._.Z+ x XAxis: YAxis: Hz g rms X:.54k Y: 367.3m Y:2 604.39m Y:3 4.663 00m 0m m 00µ 0 k 2k 2.5k

Test results - Test variant 3 (shaker armature), Sine sweep in +Z Sine Spectra of measuring points in Y 0. 0.0 [g] 0 57 3 6 24. 002: Wuerfel_2._.Y- 2. 002: Wuerfel_2._2.Y- 3. 002: Wuerfel_2._3.Y- 4. 002: Wuerfel_2._4.Y- 5. 002: Wuerfel_2._5.Y- 6. 002: Wuerfel_2._6.Y- 7. 002: Wuerfel_2._7.Y- 8. 002: Wuerfel_2._8.Y- 9. 002: Wuerfel_2._9.Y- 0. 002: Würfel_2.0.Z+ 0.00 8 9 0 00 000 2500 [Hz] C:\Users\emanuel.malek\Desktop\Kunden\Siemens Braunschweig\S_0-2500Hz_g_Lauf_Flaeche_004.rsn

Test results - Test variant 3 (shaker armature), Sine sweep in +Z Sine Spectra of measuring points in X 0. 0.0 0.00 [g] 0 5 9 2 46 8 3. 002: Wuerfel_2.2_3.X- 2. 002: Wuerfel_2.3_2.X- 3. 002: Wuerfel_2._.X- 4. 002: Wuerfel_2.2_6.X- 5. 002: Wuerfel_2.3_5.X- 6. 002: Wuerfel_2._4.X- 7. 002: Wuerfel_2.2_9.X- 8. 002: Wuerfel_2.3_8.X- 9. 002: Wuerfel_2._7.X- 0. 002: Würfel_2.0.Z+ 7 0.000 0 00 000 2500 [Hz] C:\Users\emanuel.malek\Desktop\Kunden\Siemens Braunschweig\S_0-2500Hz_g_Lauf_Flaeche3_00.rsn

Test results - Test variant 3 (shaker armature), Sine sweep in +Z Sine Spectra of measuring points in Z 0 [g]. 002: Wuerfel_2._.Z+ 2. 002: Wuerfel_2._2.Z+ 3. 002: Wuerfel_2._3.Z+ 4. 002: Wuerfel_2.3_2.Z+ 5. 002: Wuerfel_2.5_5.Z+ 6. 002: Wuerfel_2.4_2.Z+ 7. 002: Wuerfel_2.2_3.Z+ 8. 002: Wuerfel_2.2_2.Z+ 9. 002: Wuerfel_2.2_.Z+ 0. 002: Würfel_2.0.Z+ 234567890 0 00 000 2500 [Hz] C:\Users\emanuel.malek\Desktop\Kunden\Siemens Braunschweig\S_0-2500Hz_g_Lauf_Flaeche5_00.rsn

Log V rms Log g pk Test results - Test variant 3 (shaker armature), Sine sweep in +Z Control-Signal with and without cube.2 Controlsignal ohne Würfel Controlsignal mit Würfel.0544 903.65m Drive-Signal with and without cube 800m 0 k 2k 2.5k Drive ohne Würfel Drive mit Würfel 00m 0m m 0 k 2k 2.5k

Summary & conclusion Investigation of the dynamic behavior of the test cube with and without coupling to the shake Identification of the influences by the coupling to the shaker Coupling extends the oscillating system (add. masses und stiffnesses) Change of the modal parameters First natural frequency of the Cube at approx. 700 Hz Influence of add. mass of the armature coil Natural frequencies move downwards Additional mode shapes First natural frequency of the cube + shaker armature at approx. 450 Hz First point of resonance (excitation in Z) at approx. 700 Hz Sweep excitation reveals strong resonance at 50 Hz Position of control channel on the cube (multi-point control)

www.mpihome.com Thank you for your attention!