Journal of Computational and Applied Mathematics

Similar documents
arxiv: v3 [math.na] 1 Dec 2015

APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION. Let V be a finite dimensional inner product space spanned by basis vector functions

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions

Difference Equations for Multiple Charlier and Meixner Polynomials 1

Bivariate Lagrange interpolation at the Padua points: The generating curve approach

Nonnegative linearization for little q-laguerre polynomials and Faber basis

Laura Chihara* and Dennis Stanton**

CHAPTER 3 Further properties of splines and B-splines

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM

Two finite forms of Watson s quintuple product identity and matrix inversion

a non-standard generating function for continuous dual q-hahn polynomials una función generatriz no estándar para polinomios q-hahn duales continuos

Multiple Meixner polynomials and non-hermitian oscillator Hamiltonians arxiv: v2 [math.ca] 8 Nov 2013

On integral representations of q-gamma and q beta functions

Elementary Row Operations on Matrices

Generating Functions for the q-bernstein Bases

Applicable Analysis and Discrete Mathematics available online at ABEL S METHOD ON SUMMATION BY PARTS.

Models for the 3D singular isotropic oscillator quadratic algebra

Generating Functions of Partitions

A CHARACTERIZATION OF ULTRASPHERICAL POLYNOMIALS 1. THE QUESTION

Zhedanov s Askey-Wilson algebra, Cherednik s double affine Hecke algebras, and bispectrality. lecture 3: Double affine Hecke algebras.

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Transformation formulas for the generalized hypergeometric function with integral parameter differences

Positivity of Turán determinants for orthogonal polynomials

On Turán s inequality for Legendre polynomials

Bounds on Turán determinants

E.G. KALNINS AND WILLARD MILLER, JR. The notation used for -series and -integrals in this paper follows that of Gasper and Rahman [3].. A generalizati

Some Combinatorial and Analytical Identities

Nonlinear Integral Equation Formulation of Orthogonal Polynomials

Improved Newton s method with exact line searches to solve quadratic matrix equation

Construction of Multivariate Compactly Supported Orthonormal Wavelets

Convergence properties of Kemp s q-binomial distribution. Stefan Gerhold and Martin Zeiner

Numerical integration formulas of degree two

Constrained Ultraspherical-Weighted Orthogonal Polynomials on Triangle

Intrinsic products and factorizations of matrices

Pade approximants and noise: rational functions

The q-deformation of Hyperbolic and Trigonometric Potentials

Explicit polynomial expansions of regular real functions by means of even order Bernoulli polynomials and boundary values

Integral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials

Congruence Properties of Partition Function

Some congruences for Andrews Paule s broken 2-diamond partitions

Ultraspherical moments on a set of disjoint intervals

Combinatorial Analysis of the Geometric Series

Homepage: WWW: george/

arxiv: v3 [math.ca] 26 Jul 2013

Journal of Computational and Applied Mathematics

Constrained Leja points and the numerical solution of the constrained energy problem

STRONG NONNEGATIVE LINEARIZATION OF ORTHOGONAL POLYNOMIALS

Markov operators, classical orthogonal polynomial ensembles, and random matrices

Lecture 5. 1 Goermans-Williamson Algorithm for the maxcut problem

Pseudo-Boolean Functions, Lovász Extensions, and Beta Distributions

Determinantal measures related to big q-jacobi polynomials

Ehrhart polynomial for lattice squares, cubes, and hypercubes

Journal of Combinatorial Theory, Series A

Pattern generation, topology, and non-holonomic systems

Gegenbauer Matrix Polynomials and Second Order Matrix. differential equations.

TEST CODE: MMA (Objective type) 2015 SYLLABUS

c 2005 Society for Industrial and Applied Mathematics

SQUARE ROOTS OF 2x2 MATRICES 1. Sam Northshield SUNY-Plattsburgh

arxiv:math/ v1 [math.na] 12 Jul 2004

ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS

On an identity of Gessel and Stanton and the new little Göllnitz identities

q-pell Sequences and Two Identities of V. A. Lebesgue

arxiv: v1 [math.nt] 26 Jun 2015

Matrices with convolutions of binomial functions and Krawtchouk matrices

Hypergeometric series and the Riemann zeta function

BASIC HYPERGEOMETRIC SERIES

= (q) M+N (q) M (q) N

An identity of Andrews and the Askey-Wilson integral

The ABC of hyper recursions

THE COMPLEXITY OF THE QUATERNION PROD- UCT*

2 J. ZENG THEOREM 1. In the ring of formal power series of x the following identities hold : (1:4) 1 + X n1 =1 S q [n; ]a x n = 1 ax? aq x 2 b x? +1 x

COMPLETE SPACELIKE HYPERSURFACES IN THE DE SITTER SPACE

Oberwolfach Preprints

Tridiagonal test matrices for eigenvalue computations: two-parameter extensions of the Clement matrix

Limits for BC Jacobi polynomials

Journal of Computational and Applied Mathematics. Multigrid method for solving convection-diffusion problems with dominant convection

Interpolation and Deformations A short cookbook

q-special Functions, A Tutorial

On the Chebyshev quadrature rule of finite part integrals

ON THE SHARPNESS OF ONE INEQUALITY OF DIFFERENT METRICS FOR ALGEBRAIC POLYNOMIALS arxiv: v1 [math.ca] 5 Jul 2016

INCOMPLETE BALANCING AND LUCAS-BALANCING NUMBERS

Recurrence Coef f icients of a New Generalization of the Meixner Polynomials

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

On the derivatives 2 P ν (z)/ ν 2 and Q ν (z)/ ν of the Legendre functions with respect to their degrees

HENG HUAT CHAN, SONG HENG CHAN AND SHAUN COOPER

Introduction to orthogonal polynomials. Michael Anshelevich

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations

Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere

Asymptotics of Integrals of. Hermite Polynomials

Advances in Applied Mathematics 48(2012), Constructing x 2 for primes p = ax 2 + by 2

Math113: Linear Algebra. Beifang Chen

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

Phys 201. Matrices and Determinants

Enumeration Problems for a Linear Congruence Equation

Matrix-Matrix Multiplication

arxiv:math/ v1 [math.co] 13 Jul 2005

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

Doubly Indexed Infinite Series

DETERMINANT IDENTITIES FOR THETA FUNCTIONS

Beukers integrals and Apéry s recurrences

Transcription:

Journal of Computational and Applied Mathematics 233 2010) 1554 1561 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: wwwelseviercom/locate/cam Two-variable orthogonal polynomials of big -Jacobi type Stanisław Lewanowicz, Paweł Woźny Institute of Computer Science, University of Wrocław, ul Joliot-Curie 15, 50-383 Wrocław, Poland a r t i c l e i n f o a b s t r a c t Article history: Received 29 September 2007 Dedicated to Professor Jesús S Dehesa on the occasion of his 60th birthday MSC: 33D50 33C50 A four-parameter family of orthogonal polynomials in two discrete variables is defined for a weight function of basic hypergeometric type The polynomials, which are expressed in terms of univariate big -Jacobi polynomials, form an extension of Dunkl s bivariate little) -Jacobi polynomials [CF Dunkl, Orthogonal polynomials in two variables of -Hahn and -Jacobi type, SIAM J Algebr Discrete Methods 1 1980) 137 151] We prove orthogonality property of the new polynomials, and show that they satisfy a three-term relation in a vector-matrix notation, as well as a second-order partial -difference euation 2009 Elsevier BV All rights reserved Keywords: Bivariate big -Jacobi polynomial Orthogonality weight Three-term relation Partial -difference euation 1 Introduction In this paper we introduce bivariate orthogonal big -Jacobi polynomials, P n,k x, y; a, b, c, d; ) := P n k y; a, bc 2k+1, k ; ) y k /y; ) k P k x/y; c, b, d/y; ) 0, 1), 0 < a, b, c < 1, d < 0, and n N; k = 0, 1,, n), 11) P m t; A, B, C; ) := 3 φ 2 m, AB m+1, t; A, C ; ) m 0) are univariate big -Jacobi polynomials see, eg, [1, Section 73], or [2, Section 35]) The notation used in the paper is explained in the last paragraphs of this section) General properties of discrete orthogonal polynomials of several variables were discussed in [3] Notice that there exist some multivariate extensions of discrete -classical orthogonal polynomials Dunkl [4] introduced bivariate -Hahn, and little) -Jacobi polynomials Gasper and Rahman [5] proposed multivariate -Racah polynomials, from which systems of multivariate -Hahn, -Krawtchouk, -Meixner, and -Charlier polynomials follow as special or limit cases Bivariate big -Jacobi polynomials 11) occupy an important place in a hierarchy of bivariate extensions of -classical orthogonal polynomials, ie, in a two-variable extension of the -Askey tableau [2] Note that limiting forms of these polynomials are the above-mentioned bivariate little -Jacobi polynomials, as well as triangle Jacobi polynomials [6]; see also [7, p 86]) In Section 2, we give some basic properties of polynomials 11) More specifically, in Section 21, we show that they form an orthogonal system with respect to the weight function Wx, y; a, b, c, d; ) := /y, x/cy), x/d, y/a, y/d; ) y d/cy), cy/d, x/y, bx/d, y; ) Corresponding author Tel: +48 71 375 7812; fax: +48 71 375 7801 E-mail addresses: StanislawLewanowicz@iiuniwrocpl S Lewanowicz), PawelWozny@iiuniwrocpl P Woźny) 0377-0427/$ see front matter 2009 Elsevier BV All rights reserved doi:101016/jcam200902070

S Lewanowicz, P Woźny / Journal of Computational and Applied Mathematics 233 2010) 1554 1561 1555 Let P n := [P n,0, P n,1,, P n,n ] T, P n,k := P n,k x, y; a, b, c, d; ) In Section 22, we show that the following three-term relation holds: z P n = A n,z P n+1 + B n,z P n + C n,z P n 1 z = x, y; n 0), A n,z, B n,z and C n,z are matrices of appropriate dimensions, and P 1 := 0 In Section 23, we show that for any n 0, and 0 k n the polynomial P n,k x, y; a, b, c, d; ) satisfies a linear second-order partial -difference euation In the Appendix, we give some auxilliary results on the univariate big -Jacobi polynomials, needed in the paper We end this section with a list of notation and terminology used in the paper For more details the reader is referred to the monographs [1] or [8] or the report [2] The -shifted factorial is defined for any c C by c; ) k := k 1 j=0 1 c j ) k 0) Assuming that 0 < < 1, we also put c; ) := j=0 1 c j ) In what follows, we make use of the convention c 1, c 2,, c m ; ) k := c 1 ; ) k c m ; ) k k = 0, 1, or ) For c C, we define the -number [ c ] by [ c ] := c 1)/ 1) The generalized -binomial coefficient is given by [ ] n ; ) := n 0 k + l n) k, l ; ) k ; ) l ; ) n k l Partial -derivative operator with respect to x is defined for C \ {1} by f x, y) f x, y) D,x f x, y) := 1)x The -integral is defined by b a f x) d x := b1 ) f b k ) k a1 ) f a k ) k 12) k=0 The basic hypergeometric series is defined by see, eg, [1, Section 109]) a 1,, a r ; ) k )) 1+s r rφ s a 1,, a r ; b 1,, b s ; z) := k 1) k 2 z k,, b 1,, b s ; ) k k=0 r, s Z + and a 1,, a r, b 1,, b s, z C 2 Fundamental properties of the bivariate big -Jacobi polynomials We define the bivariate big -Jacobi polynomials by P n,k x, y; a, b, c, d; ) := P n k y; a, bc 2k+1, k ; ) y k /y; ) k P k x/y; c, b, d/y; ) 0, 1), 0 < a, b, c < 1, d < 0, and k=0 n N; k = 0, 1,, n), 21) P m t; A, B, C; ) := 3 φ 2 m, AB m+1, t; A, C ; ) m 0) are univariate big -Jacobi polynomials see, eg, [1, Section 73], or [2, Section 35]; in the Appendix, we recall basic data of these polynomials, and give some of their properties which are used in this section) Notice that P n,k x, y; a, b, c, 0; ) = γ n,k p n,k x, y; a, b, c ) with γ n,k := 1) n a n k c k k 2 ) + n k 2 ) +n b; ) k bc 2k+2 ; ) n k, the polynomials c; ) k a; ) n k p x, y; a, b, n,k c ) := p y; n k bc2k+1, a ) y k p k x/y; b, c ) are closely related to Dunkl s bivariate little) -Jacobi polynomials [4] Here we use the notation p m x; a, b ) := p m x/b); a, b ), p m x; a, b ) := 2 φ 1 m, ab m+1 ; a ; ) x are little -Jacobi polynomials of one variable see, eg, [8, p 182], or [2, Section 312]) Notice that lim 1 p n,k x, y; α, β, γ ) = const n,k α, β, γ ) P α+1/2,β+1/2,γ +1/2) n,k 1 y, x), P A,B,C) n,k u, v) are the triangle Jacobi polynomials see [7, p 86], or [6]) In [9,10], we gave connections of triangle and Dunkl s polynomials with two-variable classical) Bernstein and -Bernstein polynomials, respectively

1556 S Lewanowicz, P Woźny / Journal of Computational and Applied Mathematics 233 2010) 1554 1561 21 Orthogonality property Theorem 21 Polynomials P n,k x, y; ) P n,k x, y; a, b, c, d; ), 0 < a, b, c < 1, d < 0, satisfy the orthogonality relation a cy Wx, y; a, b, c, d; ) P n,k x, y; ) P m,l x, y; ) d x d y = Λ n,k a, b, c, d; ) δ n,m δ k,l, 22) /y, c 1 x/y, x/d, y/a, y/d; ) Wx, y; a, b, c, d; ) := y c 1 d/y, cy/d, x/y, bx/d, y; ), 23) is a positive weight function, with Λ n,k a, b, c, d; ) := π 1 k b, c, d; ) λ n k a, bc 2k+1, k ; ) π k b, c, d; ) := k+1)2 1 bc 2k+1 ) c, bc; ) k b, c; ) c k+1 d 2k 1 )1 bc), b; ) k, bc2 ; ), and the notation used being that of A4) Proof Notice that by 12), the functional Lf ) := cy f x, y) Wx, y; a, b, c, d; ) d x d y, may be expressed as Lf ) = εx, y) f x, y) Wx, y; a, b, c, d; ), x,y) S S := S 1 S 2 S 3, and S 1 := {ac i+1, a j+1 ) j = 0, 1, ; i j + 1}, S 2 := {a i+1, j+1 ) i, j = 0, 1, }, S 3 := { i+1, j+1 ) j = 0, 1, ; i j}, εx, y) being a rather simple positive function Now, an easy analysis shows that the function Wx, y; a, b, c, d; ) is positive on S It can be checked that Wx, y; a, b, c, d; ) = π 1 k b, c, d; )Vx, y; a, b, c, d; ), Vx, y; a, b, c, d; ) := wy; a, bc2k+1, k ; ) wx/y; c, b, d/y; ) y 2k+1 /y; ) 2 λ, k kc, b, d/y; ) and we use the notation of A3) and A4) We have cy = Vx, y; a, b, c, d; ) P n,k x, y; ) P m,l x, y; ) d x d y wy; a, bc 2k+1, k ; ) y l /y; ) l y k+1 /y; ) k λ k c, b, d/y; ) P n k y; a, bc 2k+1, k ; )P m l y; a, bc 2l+1, l ; ) cy wx/y; c, b, d/y; )P k x/y; c, b, d/y; ) P l x/y; c, b, d/y; ) d x d y By A2), the inner integral euals y λ k c, b, d/y; ) δ k,l, hence cy I := Vx, y; a, b, c, d; ) P n,k x, y; ) P m,l x, y; ) d x d y = δ k,l I, wy; a, bc 2k+1, k ; )P n k y; a, bc 2k+1, k ; )P m k y; a, bc 2k+1, k ; ) d y

S Lewanowicz, P Woźny / Journal of Computational and Applied Mathematics 233 2010) 1554 1561 1557 Observe that the function wy; a, bc 2k+1, k ; ) contains the factor assumptions on the function f, we have y/ k ); ) f y) d y = y/ k ); ) f y) d y, y/k ); ) cf A3)) Now, under certain k+1 so that, using again A2), we obtain I = δ n,m λ n k a, bc 2k+1, k ; ) Hence follows E 22) 22 The three-term relation According to the general theory of orthogonal polynomials in several variables see [7, Section 32]), a three-term relation holds in a vector-matrix form We show that for the polynomials 21) this property has the following formulation Theorem 22 Denote by P n the column polynomial vector P n := [P n,0, P n,1,, P n,n ] T, 24) P n,k := P n,k x, y; a, b, c, d; ) For n 0, the following relation holds: z P n = A n,z P n+1 + B n,z P n + C n,z P n 1 z = x, y), 25) we define P 1 := 0, and A n,z, B n,z and C n,z are matrices of the size n + 1) n + 2), n + 1) n + 1) and n + 1) n, respectively, given by the formulas a n,0 b n,0 a n,1 A n,y :=, b n,1 B n,y :=, 26) an,n 0 bn,n c n,0 c n,1 C n,y :=, cn,n 1 0 27) a n,k := 1 a n k+1 )1 abc n+k+2 )1 n+1 )/ abc 2n+2 ; ) 2 0 k n), 28) b n,k := 1 a n,k c n,k 0 k n; c nn := 0), 29) c n,k := a n+1 n k 1)1 bc n+k+1 )1 abcd 1 n+1 )/ abc 2n+1 ; ) 2 0 k n 1); 210) and f n,0 g n,0 e n,1 f n,1 g n,1 A n,x :=, 211) e n,n 1 f n,n 1 g n,n 1 0 e n,n f n,n g n,n e n,k := τ k bc k k 1)1 n+1 )a n k+1 ; ) 2 /abc 2n+2 ; ) 2 f n,k := a n,k bc k τ k σ k + 1) 0 k n), g n,k := σ k 1 n+1 )abc n+k+2 ; ) 2 /[1 k+1 )abc 2n+2 ; ) 2 ] 1 k n), 0 k n); s n,0 t n,0 r n,1 s n,1 t n,1 B n,x :=, 212) r n,n 1 s n,n 1 t n,n 1 r n,n s n,n

1558 S Lewanowicz, P Woźny / Journal of Computational and Applied Mathematics 233 2010) 1554 1561 r n,k := τ k z n k 1)1 a n k+1 )1 bc n+k+1 ) s n,k := b n,k bc k τ k σ k + 1) + k+1 σ k τ k ) 1 k n), 0 k n), t n,k := k+1 σ k z n 1 n k )1 abc n+k+2 )/1 k+1 ) 0 k n 1) with z n := { abc n+1 1 + n+1 ) } d /[1 abc 2n+1 )1 abc 2n+3 )]; and, finally, v n,0 w n,0 u n,1 v n,1 w n,1 C n,x := u n,n 1 v, 213) n,n 1 u n,n Here u n,k := τ k a n k+1 k 1)abc n+1 d)bc n+k ; ) 2 /abc 2n+1 ; ) 2 v n,k := c n,k bc k τ k σ k + 1) 0 k n 1), 1 k n), w n,k := abcσ k n+2k+3 abc n+1 d) n k 1 ; ) 2 /[1 k+1 )abc 2n+1 ; ) 2 ] 0 k n 2) σ k := 1 ck+1 )1 bc k+1 ), τ bc 2k+1 k := c k+1 1 k )1 b k ) 214) ; ) 2 bc 2k ; ) 2 In Es 26), 27) and 211) 213), the elements of matrices, which are not shown, are eual to zero Proof i) Using 21) and the three-term recurrence satisfied by the univariate big -Jacobi polynomials cf A5), in the Appendix), we obtain y P n,k x, y; a, b, c, d; ) = y P n k y; a, bc 2k+1, k ; ) y k /y; ) k P k x/y; c, b, d/y; ) = { a n,k P n k+1 y; a, bc 2k+1, k ; ) + b n,k P n k y; a, bc 2k+1, k ; ) + c n,k P n k y; a, bc 2k+1, k ; ) } y k /y; ) k P k x/y; c, b, d/y; ) = a n,k P n+1,k x, y; a, b, c, d; ) + b n,k P n,k x, y; a, b, c, d; ) + c n,k P n 1,k x, y; a, b, c, d; ), 215) the notation used is that of 28) 210) The obtained result justifies 25) with z = y ii) Again, using 21) and A5), we obtain x P n,k x, y; a, b, c, d; ) = y P n k y; a, bc 2k+1, k ; ) y k /y; ) k x/y) P k x/y; c, b, d/y; ) = σ k P n k y; a, bc 2k+1, k ; ) y k+1 /y; ) k+1 P k+1 x/y; c, b, d/y; ) [σ k y k+1 ) + τ k d bc k y) y] P n,k x, y; a, b, c, d; ) + τ k y k )d bc k y) P n k y; a, bc 2k+1, k ; )y k 1 /y; ) k 1 P k 1 x/y; c, b, d/y; ) with the notation used being that of 214) By Propositions A1 and A2 see Appendix), we have P n k y; a, bc 2k+1, k ; ) = n k j=n k 2 y k )d bc k y) P n k y; a, bc 2k+1, k ; ) = C j P j y; a, bc 2k+3, k+1 ; ), n k+2 j=n k D j P j y; a, bc 2k 1, k 1 ; ), C j := C n k,j a, bc 2k+1, k ), D j := k 1 D n k,j a, bc 2k+1, k ), notation used being that of A7) and A9) Using these results as well as E 215), being the scalar form of 25) with z = y, we obtain x P n,k x, y; a, b, c, d; ) = n+1 k+1 m=n 1 l=k 1 ξ m,l P m,l x, y; a, b, c, d; ) with ξ m,k 1 := τ k D m k+1, ξ m,k := η m,k bc k τ k σ k + 1) + δ m,n k+1 σ k dτ k ), ξ m,k+1 := σ k C m k+1, η m,k := δ m,n+1 a n,k + δ m,n b n,k + δ m,n 1 c n,k m = n 1, n, n + 1) Hence, we arrived to the scalar form of 25) with z = x

S Lewanowicz, P Woźny / Journal of Computational and Applied Mathematics 233 2010) 1554 1561 1559 23 Second-order partial -difference euation The main result of this subsection is given in the following theorem Theorem 23 For n 0 and 0 k n, polynomial P n,k x, y; ) P n,k x, y; a, b, c, d; ) satisfies the partial -difference euation L n P n,k x, y; ) { l 11 x)d,x D 1,x + l 22 y)d,y D 1,y + l 12 x, y)d 1,x D 1,y with I denoting the identity operator, and +l + 12 x, y)d,xd,y + m 1 x)d,x + m 2 y)d,y + µ n I}P n,k x, y; ) = 0 216) l 11 x) := x )x ac 2 ), l 22 y) := y a)y ), l x, y) := 12 1 x )y a), l + x, y) := 12 ac3 bx d)y 1), m 1 x) := { abc 3 1)x 1) ac 2 1) 1) } / 1), m 2 y) := { abc 3 1)y 1) a 1) 1) } / 1), µ n := [ n ] 1 n abc n+2 1)/ 1) In the proof of the theorem, which will be preceded by three lemmas, we shall use the bivariate generalized Bernstein polynomials of total degree n, defined by [10] ] B n k,l x, y; ω ) := ω; ) 1 n [ n k, l x k ω/x; ) k y l x/y; ) l y; ) n k l, 217) 0 k + l n Here ω is a real parameter, ω 1, 1,, 1 n In what follows, we adopt the convention that B n k,l x, y; ω ) = 0, if k < 0, or l < 0, or k + l > n Notice that when 1, polynomials 217), being a two-variable analogue of univariate generalized Bernstein polynomials introduced in [11] see also [12]), reduce to classical Bernstein polynomials in two variables see, eg, [13, Section 184]) Lemma 24 For n 0 and 0 k + l n, the following identity holds: L n B n x, y; ) = [ n ] k,l 1 n { ac n k+2 b k 1) B n 1 k 1,l x, y; ) 1 + a n k l 1) B n 1 k,l x, y; ) + a n k l+1 c l 1) B n 1 x, y; )} k,l 1 Lemma 25 [10]) For any k, n N such that 0 k n, we have n k n i P n,k x, y; a, b, c, d; ) = A n, k) i,j Bn n i j,j x, y; ), 218) i=0 j=0 with A i,j n, k) := abcn+2 ) i, i n ; ) k n k 1 /bc); ) i f n i,j 219) ; ) k a; ) i f i,j := 3 φ 2 j, k, bc k+1 ; i n, c ; ) 220) Lemma 26 Quantity 220) satisfies the following recurrence relation: c j+k+1 i n 1)b n i j 1) f i,j i+k n 1)bc n i+k+1 1) f i+1,j + k i n 1)c j+1 1) f i,j+1 = 0 0 i n k; 0 j n i 1; f n k+1,j := 0) Proof of Theorem 23 Apply the operator L n to both members of E 218) see Lemma 25) to obtain n k n i L n P n,k x, y; a, b, c, d; ) = A n, k) i,j L n B n n i j,j x, y; ) 221) i=0 j=0

1560 S Lewanowicz, P Woźny / Journal of Computational and Applied Mathematics 233 2010) 1554 1561 By Lemma 24, we have L n B n x, y; ) = [ n ] n i j,j 1 n { ac i+j+2 b n i j 1) B n 1 n i j 1,j x, y; ) 1 + a i 1) B n 1 n i j,j x, y; ) + ai+1 c j 1) B n 1 n i j,j 1 x, y; )} Hence, the second member of 221) can be written, after a rearrangement, as 1 n [ n ] 1 n k i=0 n i 1 j=0 { ac i+j+2 b n i j 1) A n, k) + i,j ai+1 1) A i+1,j n, k) + a i+1 c j+1 1) A n, k) } i,j+1 B n 1 n i j 1,j x, y; ) Now, the expression in parantheses { } can be written, in view of 219), as, i n ; ) a i k+1 a i+1 1)abc n+2 ) i k n k 1 /bc); ) i 1 i n ) n ; ) k a; ) i+1 { } c j+k+1 i n 1)b n i j 1) f i,j i+k n 1)bc n+k i+1 1) f i+1,j + k i n 1)c j+1 1) f i,j+1, which, by Lemma 26, euals zero Hence the thesis Acknowledgments The authors thank the referees for their helpful suggestions Appendix A Auxilliary results on the univariate big -Jacobi polynomials The big -Jacobi polynomials of a single variable see, e g, [8, Section 73], or [2, Section 35]) P k x) P k x; a, b, c; ) := 3 φ 2 k, ab k+1, x; a, c ; ), a, b and c being parameters, 0 < a, b < 1, c < 0, satisfy the orthogonality relation and c wx; a, b, c; )P k x) P l x) d x = λ k a, b, c; )δ kl, wx; a, b, c; ) := x/a, x/c; ) /x, bx/c; ), ) 1 ab), b, ab/c; ) k k λ k a, b, c; ) := M ac 2 ) k 2 1 ab 2k+1 ) a, ab, c; ) k with M := a1 ), ab 2, c/a, a/c; ) /a, b, c, ab/c; ) Also, they satisfy the three-term recurrence relation x P k x) = A k P k+1 A k + B k 1) P k x) + B k P k 1 x) k 0), A5) P 0 x) 1, P 1 x) 0, and A k := 1 a k+1 )1 ab k+1 )1 c k+1 )/ ab 2k+1 ; ) 2, B k := ac k+1 1 k )1 b k )1 abc 1 k )/ ab 2k ; ) 2 A1) A2) A3) A4) Proposition A1 The formula P n x; a, b, c; ) = n k=n 2 C n,k a, b, c; ) P k x; a, b 2, c; ) holds with C n,n a, b, c; ) := 1 c n+1 ) ab n+1 ; ) /[1 c) ab 2n+1 ; ) ], 2 2 C n,n 1 a, b, c; ) := {abn 1 + c n+1 ) c}1 n )1 ab n+1 ), 1 c)1 ab 2n )1 ab 2n+2 ) C n,n 2 a, b, c; ) := ab n+2 ab n c) n 1 ; ) /[1 c) ab 2n ; ) ] 2 2 A6) A7)

S Lewanowicz, P Woźny / Journal of Computational and Applied Mathematics 233 2010) 1554 1561 1561 Proposition A2 The formula x c)c bx) P n x; a, b, c; ) = n+2 k=n D n,k a, b, c; ) P k x; a, b/ 2, c/; ) holds with D n,n+2 a, b, c; ) := bc 1)1 c n+1 ) a n+1 ; ) / ab 2n+1 ; ), 2 2 D n,n+1 a, b, c; ) := {ab n 1 + c n+1 ) c} c 1)1 an+1 )1 b n ), 1 ab 2n )1 ab 2n+2 ) D n,n a, b, c; ) := a n+2 c 1)ab n c) b n 1 ; ) / ab 2n ; ) 2 2 A8) A9) References [1] GE Andrews, R Askey, R Roy, Special Functions, Cambridge Univ Press, Cambridge, 1999 [2] R Koekoek, RF Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its -analogue, Rep 98 17, Fac Techn Math Informatics, Delft Univ of Technology, 1998 [3] Y Xu, On discrete orthogonal polynomials of several variables, Adv Appl Math 33 2004) 615 632 [4] CF Dunkl, Orthogonal polynomials in two variables of -Hahn and -Jacobi type, SIAM J Algebr Discrete Methods 1 1980) 137 151 [5] G Gasper, M Rahman, Some systems of multivariable orthogonal -Racah polynomials, Ramanujan J 13 2007) 389 405 [6] TH Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in: RA Askey Ed), Theory and Application of Special Functions, Academic Press, New York, 1975, pp 435 495 [7] CF Dunkl, Y Xu, Orthogonal Polynomials of Several Variables, Cambridge Univ Press, Cambridge, 2001 [8] G Gasper, M Rahman, Basic Hypergeometric Series, 2nd ed, Cambridge University Press, Cambridge, 2004 [9] S Lewanowicz, P Woźny, Connections between two-variable Bernstein and Jacobi polynomials on the triangle, J Comput Appl Math 197 2006) 520 533 [10] S Lewanowicz, P Woźny, I Area, E Godoy, Multivariate generalized Bernstein polynomials: Identities for orthogonal polynomials of two variables, Numer Algor 49 2008) 199 220 [11] S Lewanowicz, P Woźny, Generalized Bernstein polynomials, BIT Numer Math 44 2004) 63 78 [12] S Lewanowicz, P Woźny, Dual generalized Bernstein basis, J Approx Theory 138 2006) 129 150 [13] GE Farin, Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide, 3rd ed, Academic Press, Boston, 1996