The Performance Analysis Of Four Tank System For Conventional Controller And Hybrid Controller

Similar documents
Design of Decentralized Fuzzy Controllers for Quadruple tank Process

Analysis of Modelling Methods of Quadruple Tank System

Control of an Ambiguous Real Time System Using Interval Type 2 Fuzzy Logic Control

COMPARISON OF FUZZY LOGIC CONTROLLERS FOR A MULTIVARIABLE PROCESS

CHAPTER 7 MODELING AND CONTROL OF SPHERICAL TANK LEVEL PROCESS 7.1 INTRODUCTION

Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process

DECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER

Enhanced Fuzzy Model Reference Learning Control for Conical tank process

Design and Comparative Analysis of Controller for Non Linear Tank System

Simulation based Modeling and Implementation of Adaptive Control Technique for Non Linear Process Tank

Soft Computing Technique and Conventional Controller for Conical Tank Level Control

Design of Model based controller for Two Conical Tank Interacting Level systems

Modelling and Simulation of Interacting Conical Tank Systems

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL

A Boiler-Turbine System Control Using A Fuzzy Auto-Regressive Moving Average (FARMA) Model

Design and Implementation of Sliding Mode Controller using Coefficient Diagram Method for a nonlinear process

CHAPTER 5 FREQUENCY STABILIZATION USING SUPERVISORY EXPERT FUZZY CONTROLLER

EXCITATION CONTROL OF SYNCHRONOUS GENERATOR USING A FUZZY LOGIC BASED BACKSTEPPING APPROACH

RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India)

Performance Of Power System Stabilizerusing Fuzzy Logic Controller

Fuzzy Control of a Multivariable Nonlinear Process

Multivariable Control Laboratory experiment 2 The Quadruple Tank 1

YTÜ Mechanical Engineering Department

Process Control Hardware Fundamentals

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach

A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops

Multiple Model Based Adaptive Control for Shell and Tube Heat Exchanger Process

YTÜ Mechanical Engineering Department

MULTILOOP PI CONTROLLER FOR ACHIEVING SIMULTANEOUS TIME AND FREQUENCY DOMAIN SPECIFICATIONS

Type-2 Fuzzy Logic Control of Continuous Stirred Tank Reactor

Linear Discrete-time State Space Realization of a Modified Quadruple Tank System with State Estimation using Kalman Filter

DESIGN OF FUZZY ESTIMATOR TO ASSIST FAULT RECOVERY IN A NON LINEAR SYSTEM K.

Control of Conical Tank Level using in Industrial Process by Fuzzy Logic Controller

International Journal of Emerging Technology and Advanced Engineering Website: (ISSN , Volume 2, Issue 5, May 2012)

Keywords - Integral control State feedback controller, Ackermann s formula, Coupled two tank liquid level system, Pole Placement technique.

Decentralised control of a quadruple tank plant with a decoupled event-based strategy

PERFORMANCE ANALYSIS OF TWO-DEGREE-OF-FREEDOM CONTROLLER AND MODEL PREDICTIVE CONTROLLER FOR THREE TANK INTERACTING SYSTEM

LQR CONTROL OF LIQUID LEVEL AND TEMPERATURE CONTROL FOR COUPLED-TANK SYSTEM

Fault Detection and Diagnosis for a Three-tank system using Structured Residual Approach

Feedback Control of Linear SISO systems. Process Dynamics and Control

Fuzzy Control. PI vs. Fuzzy PI-Control. Olaf Wolkenhauer. Control Systems Centre UMIST.

Design and Development of Complex Nonlinear System using TMPSO for Improving Performance Integral Criteria

A Tuning of the Nonlinear PI Controller and Its Experimental Application

Uncertain System Control: An Engineering Approach

5. Lecture Fuzzy Systems

Improved Identification and Control of 2-by-2 MIMO System using Relay Feedback

Design of Controller using Variable Transformations for a Two Tank Conical Interacting Level Systems

Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer

Steam-Hydraulic Turbines Load Frequency Controller Based on Fuzzy Logic Control

Control of MIMO processes. 1. Introduction. Control of MIMO processes. Control of Multiple-Input, Multiple Output (MIMO) Processes

EXPERIMENTAL IMPLEMENTATION OF CDM BASED TWO MODE CONTROLLER FOR AN INTERACTING 2*2 DISTILLATION PROCESS

Models for Inexact Reasoning. Fuzzy Logic Lesson 8 Fuzzy Controllers. Master in Computational Logic Department of Artificial Intelligence

Design and Implementation of PI and PIFL Controllers for Continuous Stirred Tank Reactor System

EFFECT OF VARYING CONTROLLER PARAMETERS ON THE PERFORMANCE OF A FUZZY LOGIC CONTROL SYSTEM

Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- Thermal-Hydro Power System

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

MODELLING AND REAL TIME CONTROL OF TWO CONICAL TANK SYSTEMS OF NON-INTERACTING AND INTERACTING TYPE

NonlinearControlofpHSystemforChangeOverTitrationCurve

World Journal of Engineering Research and Technology WJERT

Robust multi objective H2/H Control of nonlinear uncertain systems using multiple linear model and ANFIS

Simulation of Quadruple Tank Process for Liquid Level Control

Lecture 06. (Fuzzy Inference System)

Circuit Implementation of a Variable Universe Adaptive Fuzzy Logic Controller. Weiwei Shan

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT

CHAPTER 7 FRACTIONAL ORDER SYSTEMS WITH FRACTIONAL ORDER CONTROLLERS

Design On-Line Tunable Gain Artificial Nonlinear Controller

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur

Fuzzy Applications in a Multi-Machine Power System Stabilizer

Closed loop Identification of Four Tank Set up Using Direct Method

PROPORTIONAL-Integral-Derivative (PID) controllers

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL

Experimental Investigations on Fractional Order PI λ Controller in ph Neutralization System

Control Of Heat Exchanger Using Internal Model Controller

Inter-Ing 2005 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC CONFERENCE WITH INTERNATIONAL PARTICIPATION, TG. MUREŞ ROMÂNIA, NOVEMBER 2005.

Multivariable Predictive PID Control for Quadruple Tank

Design of Close loop Control for Hydraulic System

A fuzzy logic controller with fuzzy scaling factor calculator applied to a nonlinear chemical process

MODELING OF NONLINEAR SYSTEM FOR A HYDRAULIC PROCESS

Fuzzy Control Systems Process of Fuzzy Control

ANALYSIS OF ANTI-WINDUP TECHNIQUES

Performance Analysis of ph Neutralization Process for Conventional PI Controller and IMC Based PI Controller

Performance Comparison of PSO Based State Feedback Gain (K) Controller with LQR-PI and Integral Controller for Automatic Frequency Regulation

Modeling of Hydraulic Control Valves

Comparison of servo tracking capability of the interconnected cylinders positioning system with servo pneumatic positioning system

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVII - Analysis and Stability of Fuzzy Systems - Ralf Mikut and Georg Bretthauer

ABSTRACT I. INTRODUCTION II. FUZZY MODEL SRUCTURE

Fuzzy PID Control System In Industrial Environment

Controller Tuning for Disturbance Rejection Associated with a Delayed Double Integrating Process, Part I: PD-PI Controller

Comparing Methods for System Identification on the Quadruple Tank Process

Comparative Study of Controllers for a Variable Area MIMO Interacting NonLinear System

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE

Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University. Fuzzy Logic Controllers - Tutorial

Design and Implementation of Two-Degree-of-Freedom Nonlinear PID Controller for a Nonlinear Process

DESIGN OF A HIERARCHICAL FUZZY LOGIC PSS FOR A MULTI-MACHINE POWER SYSTEM

Index Terms Magnetic Levitation System, Interval type-2 fuzzy logic controller, Self tuning type-2 fuzzy controller.

Model Based Fault Detection and Diagnosis Using Structured Residual Approach in a Multi-Input Multi-Output System

Gain Scheduling Control with Multi-loop PID for 2-DOF Arm Robot Trajectory Control

Input-output data sets for development and benchmarking in nonlinear identification

ANFIS Gain Scheduled Johnson s Algorithm based State Feedback Control of CSTR

Transcription:

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 6 June-216 www.irjet.net p-issn: 2395-72 The Performance Analysis Of Four Tank System For Conventional Controller And Hybrid Controller Parvathy Prasad 1 1PG Scholar,Vimal Jyothi Engineering College,chemberi,Kannur ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Design of multivariable control system is very essential in the process industries. The four tank system is a benchmark system. So disturbances are essential to analyze the performance of various controllers. Steady state analysis and linearization done using mathematical operations. Mathematical modeling of system is done using first principle. Here the performance of the system in non minimum phase is analyzed for conventional controllers and hybrid fuzzy controller. Servo and regulatory response of both of the controllers analyzed.it is found that hybrid fuzzy controller controls the system effectively than conventional controller. Key Words: four tank system, MIMO system, Conventional controller, hybrid fuzzy controller, Fuzzy logic controller 1.INTRODUCTION Industrial control problems are usually non-linear in nature and have multiple control variables. The systems involved in such industrial process show significant uncertainties, non-minimum phase behaviour and a lot of interactions. To understand the non-idealities of such industrial processes there is a need for laboratory equipment to carry out experiments. The quadruple tank system is a benchmark system used to analyse the nonlinear effects in a multivariable process[1]. This helps in realizing the multi loop systems in industries. It is a level control problem based on four interconnected tanks and two pumps. The inputs to the process are the voltage to the pumps and outputs are the water levels in the lower two tanks. Many times the liquid will be processed by chemical or mixing treatment in the tank, but always the level of fluid in the tank must be controlled and the flow between tanks must be regulated[2]. The Quadruple tank was developed in the 1996 at Lund institute of Technology, Sweden in order to illustrate the importance of multivariable zero location for control design[3]. The quadruple tank process is thus used to demonstrate coupling effects and performance limitations in multivariable control systems. The multivariable dynamic property in a quadruple tank system is the way in which each pump affects both the outputs of the system. The quadruple tank system is widely used in visualizing the dynamic interactions and non- linearities exhibited in the operation of power plants, chemicalindustries and biotechnological fields [4].The control of such interacting multivariable processes is of great interest in process Industries. Multivariable system involves a number of control loops which interact with each other where one input not only affects its own output but also influences other outputs of the system[5]. The performance of the four tank system for conventional and I controller was very effective[6].the system performs well for D controller also[7],[8].it has been discussed in various papers. The system is suitable for the analysis of some advanced controllers also. It is possible to control the quadruple tank system using Fuzzy logic controllers[8].the four tank system provides better result for the interval type -2 fuzzy logic controller(it2flc)[9].there were some studies to design a decentralized Fuzzy pre compensated controller for multivariable laboratory quadruple tank system[1].some papers describes the implementation of model based methods for the control of interacting four tank systems[11].fmmrac is proposed and applied to the four tank system to test its effectiveness[12].simple Fuzzy logic controllers can provide better control of the Quadruple tank system[13],[14]. Here mathematical modelling of the system done by applying first principles,taylor series and Jacobian matrix transformations[15].quadruple tank system used for analysis of conventional controller and hybrid Fuzzy controller. In this paper section 2 and 3 describes the quadruple tank system and modelling respectively. Section 4 contains the design of controllers and 5 is simulation analysis. Section 6 is the conclusion 2. FOUR TANK SYSTEM The quadruple tank system is a MIMO system used to analyze different control strategies. It is considered as a two double-tank process. The setup consists of four interacting tanks, two pumps and two valves. The two process inputs are the voltages v 1 and v 2 pumps. Tank 1 and tank 2 are placed below tank 3 and tank 4 to receive water flow by the action of gravity. To accumulate the outgoing water from tank 1 and tank 2 a reservoir is present in the bottom. 216, IRJET ISO 91:28 Certified Journal Page 2182

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 6 June-216 www.irjet.net p-issn: 2395-72 The action of pumps 1 and 2 is to suck water from the reservoir and deliver it to tanks based on the valve opening. Pump 2 delivers water to tank 2 and tank 3. Similarly the pump 1 delivers water to tank 1 and tank 4. The system aims at controlling the liquid levels in the lower tanks. The controlled outputs are the liquid levels in the lower tanks (h 1, h 2 ). The valve positions are γ 1 and γ 2. These valve positions give the ratio in which the output from the pump is divided between the upper and lower tanks. The valve position is fixed during the experiment and only the speed of pump is varied by changing the input voltages to the pumps. Flow of the liquid can be seen using a rotameter. Where k i is the pump constant. Considering the flow in and out of all tanks simultaneously, the non-linear dynamics of the quadruple tank process is given Where A i denotes the cross sectional area of the tank, hi is the water level, q in i is the in-flow of the tank and q out i is the outflow of the tank. q out i = a i 2gh i (4) Where a i denotes the cross-sectional area of the outlet hole, g is the acceleration due to gravity Final equations are dh 1 dh 2 dh 3 dh 4 = a 1 2gh 1 + a 3 2gh 3 + γ 1k 1 v 1 (5) = a 2 2gh 2 + a 4 2gh 4 + γ 2k 2 v 2 (6) = a 3 + (1 γ 2)k 2 v 2 (7) = a 4 2gh 4 + (1 γ 1 )k 1 v 1 (8) Fig- 1: Quadruple Tank System The operation of quadruple tank system can be in two phases minimum phase and non- minimum phase. It is seen from the Fig.1 that the output of tank 1 is influenced by tank 3 and the position of valve 1. The output of tank 2 is influenced by tank 4 and also by the position of valve 2. When the fraction of liquid entering the lower tanks is less than that of upper tanks then the system starts operating in non minimum phase. When the fraction of liquid entering the upper tanks is less than that of lower tanks then the system starts operating in minimum phase. Non linear relationship in the equation is due to square root term present in it. The equation is solved using Taylor series followed by Jacobian matrix transformation to obtain a state space form of quadruple tank process[15]. A= 1 T 1 1 T 2 T 3 T 4 1 T 3 1 T 4 (9) 3. MODELLING Here we are representing the system in terms of a set of mathematical equations, whose solutions gives the dynamic behavior of the system. Initially we write the mass balance equations using Bernoulli s law. A dh i = q in i q out i (1) Each pump i=1, 2 gives a flow proportional to the control signal as follows B= ( γ 1 k 1 1 γ 1 )k 1 γ 2 k 2 (1 γ 2 )k 2 C= kc kc (1) (11) q in i = k i v i γ for i=1,2 (2) q in i =k i v i (1 γ) for i=3,4 (3) D= (12) 216, IRJET ISO 91:28 Certified Journal Page 2183

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 6 June-216 www.irjet.net p-issn: 2395-72 State space model can be converted to transfer function model by using a simple conversion technique. G(s) = C(sI A) 1 +B (13) (SI A) 1 = T 1 1+sT 1 C(SI A) 1 + B= G(s) = T 2 1+sT 2 T 1 k 1 k c γ 1 (1+sT 1 ) T 2 k 1 k c k 2 (1 γ 1 ) T 1 A1 1+sT 1 (1+sT 3 ) T 2 1+sT 2 (1+sT 4 ) T 3 1+sT 3 k 2 (1+sT 2 )(1+sT 4 ) C 1 γ 1 C 1 k 2 (1 γ 2 ) (1+sT 1 ) 1+sT 1 (1+sT 3 )k 1 C 1 k 1 (1 γ 1 ) C 2 γ 2 1+sT 2 (1+sT 4 )k 2 (1+sT 2 ) T 4 1+sT 4 T 1 k 1 k c k 2 (1 γ 2 ) k 1 (1+sT 1 )(1+sT 3 ) T 2 k 2 k c γ 2 (1+sT 2 ) (14) (15) (16) C 1 = T 1k 1 k c (17) C 2 = T 2k 2 k c T 2 (18) Table -1: System Parameter Values Parameter(Unit) Value, [cm 2 ] 28, [cm 2 ] 32 a 1, a 3 [cm 2 ].71 a 2, a 4 [cm 2 ].57 k c 1 g 981 h 1 1.43 h 2 15.98 h 3 6.6 h 4 9.57 v 1 3.15 v 2 3.15 k 1 3.14 k 2 3.29 γ 1,γ 2.35 4.. DESIGN OF CONTROLLERS 4.1 CONTROLLER controller is a conventional controller widely used in industries. It will eliminate forced oscillations and steady state error resulting in operation of on off controller and proportional controller respectively. It is generally used in the areas where speed of the system is not an issue. Here we are using two controllers for controlling two tanks. Tuned values for both Kp, Ki are given in the table. Table 2-Tuned values of controller Kp Ki controller 1 -.42871 -.1319 2.61421.2343 4.2 FUZZY PRE COMPENSATED CONTROLLER Here fuzzy methods are used to enhance the performance of system using controller. Basic configuration of FPC is shown in the figure.flc has just a supplementary role to enhance the existing control system when control conditions changes. When disturbance acting on the system,the performance of controller become poor. The replacement or tuning of existing controller may provide better results. But this is not possible all the time. So FLC used to provide a modified control action to existing controller. Fig-2: Basic configuration of FPC G(s)= 2.26 (57.74s+1) 3.61 88.34s+1 (56.47s+1) 2.91 57.74s+1 (38.14s+1) 3.17 (88.34s+1) (19) Basic configuration of FLC comprises of three components: fuzzification interface, decision making logic and a defuzzification interface.fuzzy logic uses linguistic variables instead of numerical variables. The process of converting a numerical variable in to a linguistic variable is called fuzzification. In this work the error and change in error of level outputs (h 1, h 2 ) are taken as inputs and the 216, IRJET ISO 91:28 Certified Journal Page 2184

Level of Tank 1 Level of tank 1(cm) International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 6 June-216 www.irjet.net p-issn: 2395-72 pump voltages(v 1,v 2 ) are the controller outputs. The error and change in error is converted into seven linguistic values namely NB, NM,NS,ZR,PS,PM and PB. Similarly controller output is converted into seven linguistic values namely NB,NM,NS,ZR,PS,PM and PB. Triangular membership function is selected and the elements of each of the term sets are mapped on to the domain of corresponding linguistic variables. The membership functions for error change in error and controller output is shown in the figure. process knowledge. The rules are given in Table 3.The decision stage processes the input data and computes the controller outputs. The output of the rule base is converted into a crisp value, this task is done by defuzzification module. 5. SIMULATION ANALYSIS The performance of the system for controller and Fuzzy pre -compensated controller can be analyzed easily from the simulation results 3 25 2 15 1 Response of FPC Fig -3: Membership function of error and change in error 5 Response of C Setpoint -5 5 1 15 2 25 3 Chart -1: Regulatory response of the system for tank 1 2 18 16 14 Fig-4: Membership function of controller output 12 1 Response of FPC Response of C Set point Table-3: Rule base for the fuzzy logic compensator 8 6 4 2 5 1 15 2 25 3 35 4 45 5 Chart-2: Servo response of the system for tank 1 Basically, the decision logic stage is similar to a rule base consisting of fuzzy control rules to decide how FLC works. The rules are generated heuristically from the response of the conventional controller, 49 rules are derived for each fuzzy controller from careful analysis of trend obtained from the simulation of conventional controller and known 216, IRJET ISO 91:28 Certified Journal Page 2185

Level of tank 2(cm) Level of tank 2(cm) International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 6 June-216 www.irjet.net p-issn: 2395-72 18 16 14 12 1 8 Response of C Response of FPC Setpoint ISE 277 16 276 2 118 64 199 2762 1668 6 4 2 5 1 15 2 25 3 Chart-3: Servo response of the system for tank 2 25 2 15 1 5 Response of FPC Response of C Setpoint The performance of the two controllers can be evaluated using performance indices namely Integral Square error (ISE) and Integral Absolute Error (IAE). A control system is considered optimal when it minimizes the above integrals. Table 4 summarizes the integral error values for the two control schemes. Fuzzy pre compensated controller has the least ISE, and IAE values. Perf orm ance indic es Chart-4: Regulatory response of the system for tank 2 It is clear from the results that the hybrid controller provides less steady state error and fast settling compared to conventional controller. Table-3:Analysis of Performance indices serv o FP servo Tank 1 Tank 2 regu lato ry ITAE 2675 1327 187 5 5 1 15 FP regul ator y Servo FP servo regula tory FP regu lator y 112 2533 352 113 122 3. CONCLUSIONS This work clearly shows the advantages of using fuzzy pre compensated controller for a Four Tank System. The comparison of the two controllers reveals that fuzzy pre compensated controller performs well for the system. REFERENCES [1] Prof. D. Angeline Vijula, Anu K,Honey Mol P, PoornaPriya Mathematical Modelling of Quadruple Tank System, International Journal of Emerging Technology and Advanced Engineering,Volume 3, Issue 12, December 213 [2] Jaya prakash J, Davidson D, Subha Hency Jose P, Comparison of Controller Performance for MIMO Process, International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 8, August 213 [3] Johansson KH, Horch A, Hansson A. Teaching multivariable control using the quadruple tank process. In: Proceeding of the 38 th conference on decision & control; December 1999. [4] Qamar Saeed, Vali Uddin and Reza Ketabi Multivariable predictive D control for quadruple tank, in Proceedings of World Academy of Science, Engineering and Technology, Beijing, China, Vol.67, No.4, pp.861-866. 216, IRJET ISO 91:28 Certified Journal Page 2186

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 6 June-216 www.irjet.net p-issn: 2395-72 [5] Jayaprakash J, SenthilRajan T, Harish Babu T, Analysis of Modelling Methods of Quadruple Tank System, International Journal of Advanced Research in Electrical Electronics and Instrumentation Engineering, Vol. 3, Issue 8, August 214 Research in Electrical Electronics and Instrumentation, Vol. 3, Issue 8, August 214 [6] Yousof Gholipour, Ahmad Zare, Comparing the effect of and I controllers on a four tank process, International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 1, Issue 1, pp: (1-6), Month: April - June 214. [7] W. Belhaj, O. Boubaker, On MIMO D Control of the quadruple-tank process via ILMIs Approaches : Minimum and Non-Minimum Case studies, 1th IFAC International Symposium on Dynamics and Control of Process Systems, The International Federation of Automatic Control,December 18-2, 213. Mumbai, India [8] S.K.Lakshmanaprabu, N. Sivaramakrishnan, U. Sabura Banu, Closed Loop Control of Quadruple Tank Process using Fuzzy Logic Controller, National Conference on Computational Intelligence for the Engineering Quality Software (CiQS 214) [9] Karthick S, Lakshmi P, Deepa T, Comparison of Fuzzy Logic Controllers For a Multivariable Process, International Journal of Electrical and Electronics Engineering (IJEEE) ISSN):pp 2231 5284, Volume-3, Issue-1, 213 [1] R.Suja Mani Malar, T.Thyagarajan, Design of Decentralized Fuzzy Pre compensated Controllers for Quadruple Tank system.international Journal of Recent Trends in Engineering, Vol 2, No. 5, November 29 [11] Edward Gatzke, Edward S. Meadows, Chung Wang, Franc is J. Doyle III P, Model Based Control Of a Four Tank System, Computers and Chemical Engineering pp 153-159. [12] ` Sankata B. Prusty, Umesh C. Pati and Kamala K. Mahapatra, A Novel Fuzzy based Adaptive Control of the Four Tank System [13] Shebeera C. A, Shijoh V, M. V. Vaidyan, Non-linear Modeling and Fuzzy Control for a Quadruple Tank Process, Proceedings of National Conference EEM 214 [14] Non-linear Modeling and Fuzzy Control for a Quadruple Tank Process, Proceedings of National Conference EEM 214. [15] R.SujaMani Malar,T.Thyagarajan, Modeling of Quadruple Tank System Using Soft Computing Techniques,European Journal of Scientific Research ISSN 145-216X Vol.29 No.2(29),pp.249-264 [16] Jayaprakash J, SenthilRajan T, Harish Babu, Analysis of Modelling Methods of Quadruple Tank System, Engineering International Journal of Advanced 216, IRJET ISO 91:28 Certified Journal Page 2187