Modeling Eclipses with Size and Distance Scales

Similar documents
What's Up, Earth? Header Insert Image 1 here, right justified to wrap. Grade Level. 3rd. Time Required: 60 minutes

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND

Earth, Earth s Moon, Mars Balloons Grades: Middle School Grade Prep Time: ~10 Minutes Lesson Time: 60 Mins

Our Fun Sun. Source: Measuring the Diameter of the Sun, The Educator s Reference Desk Enchanted Learning

Appearances Can Be Deceiving!

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND

SHORT DISCOVERY-BASED STEM EXPERIENCES STEM. Brought to you by the NATIONAL AFTERSCHOOL ASSOCIATION

Orbital Scale of the Solar System

Drexel-SDP GK-12 ACTIVITY

Astronomy 101 Lab: Lunar Phases and Eclipses

TEACHER Worksheet: Phases of the Moon and Tides

2275 Speedway, Mail Code C9000 Austin, TX (512) Planet Fun

Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse.

DISAPPEARING SUN? TOTAL ECLIPSE OF THE SUN

12.2. The Earth Moon System KNOW? The Phases of the Moon. Did You

Worlds in Comparison

Gravity and Orbits Activity Page 1. Name: Grade: Gravity and Orbits. Pre-lab. 1. In the picture below, draw how you think Earth moves.

Gravity and Orbits. 1. Choose the picture you think shows the gravity forces on the Earth and the Sun.

MS-ESS1-1 Earth's Place in the Universe

Science and Engineering Practices DRAFT. Interpreting Data. and Applications of system and beyond. Students consider the

Build the EARTH and MOON 1. 1 Glue together. BASE 4. Glue near the center of the bottom side of BASE 1. BASE 1. Glue together.

The Ocean s Tides. Standards. Ocean Literacy. 46 Rocky Shore Lesson 5. Focus Question. Overview. Objectives. Materials Needed. Teacher Preparation

Sizing Up the Moon. Activity Guide. Originally developed by Dennis Schatz (Pacific Science Center) for Family ASTRO

THE SUN, THE MOON AND OUR SOLAR SYSTEM TEACHER NOTES TO SHARE WITH STUDENTS

THE GREAT SUN-EARTH-MOON LINE-UP

Gravity. Earth and Space. Gravity. Background

the songg for Science.

Science 8 th Grade Scope and Sequence

Infinity Express. Kendall Planetarium. Planetarium Show Teacher s Guide PROGRAM OUTLINE

Unit 2: Astronomy. Content Area: Science Course(s): Generic Course Time Period: Marking Period 1 Length: approximately 15days Status: Published

Football Solar System Lab

Thanks. You Might Also Like. I look forward helping you focus your instruction and save time prepping.

Parenting Tip of the Month. April. Lower Elementary Teachers

This article describes a unit in which students investigate. William R. Thornburgh and Thomas R. Tretter

Cosmic Landscape Introduction Study Notes

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller.

MOTION IN THE SOLAR SYSTEM ENGAGE, EXPLORE, EXPLAIN

A Walk Across the Solar System

Day & Night minutes Workshop. Up to 15 children

The Solar System. Grade Level: 4 6

Lesson Plan: Star Gazing By: Darby Feldwinn

Activity 2 MODELING LAB

You Might Also Like. I look forward helping you focus your instruction while saving tons of time. Kesler Science Station Lab Activities 40%+ Savings!

Q25: Record the wavelength of each colored line according to the scale given.

- ( ). 1. THE PLANETARY GAMBLING MACHINE.

Eclipses - Understanding Shadows

After you read this section, you should be able to answer these questions:

Orbital Paths. the Solar System

Planets and Moons. unit overview

Planet Detection. AST 105 Intro Astronomy The Solar System

Lab: Modeling Eclipses

What is an eclipse? Lunar Eclipses. By NASA, adapted by Newsela staff on Word Count 866 Level 940L

All instruction should be three-dimensional. Performance Expectations. 1-ESS1-2 is partially assessable

Sample Pages. Free Newsletter Sign up Today! Learn Through Experience

Solar vs. Lunar Tides

What is an eclipse? Lunar Eclipses. By NASA, adapted by Newsela staff on Word Count 866 Level 940L

Colorado State Standards Mathematics Standards 3.4 Science Standard 1, 2, 4, 5. Teaching Time: One 60-minute period

Space Systems Module for Middle School How to use an orrery to teach Earth-Sun-Moon interactions. Walter Glogowski 123STEM.com

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve:

Explore Marvel Moon: KID MOON: SPLAT!

An Interactive Demonstration of Solar and Lunar Eclipses

5. What force holds the different astronomical systems described in this section together? What other forces exist in nature?

Astr 1050 Mon. Jan. 31, 2017

What is an eclipse? Lunar Eclipses. By NASA, adapted by Newsela staff on Word Count 866 Level 940L

Hunting for Planets. Overview. Directions. Content Created by. Activitydevelop. How can you use star brightness to find planets?

The Hubble Deep Field

AST 104 Lab 8: Hubble Deep Field & The Fate of the Universe

Seasons, Weather, and Earth s Climate (90 minutes) Disciplinary Core Ideas: ESS1.B, ESS2.D

The complete lesson plan for this topic is included below.

CLASSROOM SCIENCE ACTIVITY TO SUPPORT STUDENT ENQUIRY-BASED LEARNING

Module 8: The Cosmos in Motion. UNC-TFA H.S. Astronomy Collaboration, Copyright 2011

The GTA Workshop. Dr Kate Jones

Astronomy: Exploring the Universe

2007 TU24. Astronomy 122. Compass Grading 2007 TU24. An asteroid cometh..

Standards Alignment... 5 Safe Science... 9 Scienti c Inquiry Assembling Rubber Band Books...15

Chapter 5 Newton s Universe

Cub Scouts STEM/Nova Exhibit Guide

Name: Partner(s): 1101 or 3310: Desk # Date: Eclipses. Purpose

What Objects Are Part of the Solar System?

READY-TO-USE LESSON PLANS. Meet the Planets

What if we didn t have The Moon?

SOURCES AND RESOURCES:

Moon Project Handout. I: A Mental Model of the Sun, Moon, and Earth (Do in class.)

Learning About Our Solar System

Lab Activity on the Moon's Phases and Eclipses

Supporting Video:

The Main Point. Phases and Motions of the Moon. Lecture #5: Earth, Moon, & Sky II. Lunar Phases and Motions. Tides. Eclipses.

How large is the moon compared to the earth? What is the distance between the earth and moon? The answers might surprise you.

#PS-06 3-D Constellation Kit Teacher's Notes and Activities

Tell students that Earth is the only planet in our solar system known to have life. Ask:


Science Revision Paper- Final Exam May-June Write the scientific terms for the following statements/definitions: Part A

Lesson 1 The Structure of the Solar System

5 & Up (ages 5-9 best with adult facilitation/collaboration)

Unlocking the Solar System

7.RP.A.2 Recognize and represent proportional relationships between quantities.

What s a Planet? In the mean time, this activity will familiarize your child with what makes a planet a planet!

Full Moon. Phases of the Moon

Star. Planet. Chapter 1 Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe?

Activity One Force, Mass, and Acceleration

Transcription:

GRADE LEVEL 3 rd -8 th ; NGSS standards for Middle School SUBJECTS Earth & Space Science; Using Models; Scale, Proportion and Quantity; Using Mathematics and Computational Thinking DURATION Preparation: 5-30 minutes Activity: 40 minutes SETTING Outside field or playground yard Objectives By the end of this activity students will be able to: 1. use a model to describe why the phenomena of the solar eclipse happens. 2. describe how size and distance of objects effects what can be observed. Teacher Prep Try the activity for yourself before leading it. This activity can stand alone, or can come after doing Kinesthetic Astronomy and Moons in Comparison. Gather your materials. Teacher Tip: o Blow up the beach balls - It takes about 20 minutes to blow up a 48 beach ball with a hand pump. o Use playdough or clay to form the Earth Ball and the Moon Ball out of playdough instead of purchasing one. Figure out how you want to split students into groups of 4. Materials Note: This lesson is written assuming the Sun to be a 48 ball. However it can be done with smaller dimensions by dividing everything in half. Each group of 4 students will need the following: 48 inch ball [very large beach ball] to represent the Sun 4.5 inch ball to represent the Earth 0.48 inch ball to represent the Moon Yard Stick 11.25 ft piece of string An area that is > 164 yards long A notebook Teacher and Student Engagement, 2017 1

Scientific Terms for Students moon: A natural object that orbits a larger object. eclipse: when one celestial body such as a moon or planet moves into the shadow of another celestial body. solar eclipse: a type of eclipse that occurs when the Moon passes between the Sun and Earth, and the Moon fully or partially blocks light of the Sun. Background for Educators How much space is truly in space? And how does the distance between things affect the ways that objects in space are perceived? This activity leads students to explore the concepts of size, distance and scale through using 3- dimensional models to understand these question in regards to the Earth, the Moon, and the Sun. Students begin with thinking about their own internal mental models, then use different sized balls in order to develop an explanation for why solar eclipses happen. Scientists develop and use models in order to explore how systems work. They can help make a concept that is hard to see become visible. The Next Generation Science Standards state that by the end of 5 th grade students should be able to use models to describe and/or predict phenomena. Additionally, the standards also mention that students should be able to identify the limitations of models. Common Misperceptions Models and illustrations of the Solar System often represent either size or distances in the solar system because it can be difficult to combine them into one model. This can cause the common misperceptions that the objects in the solar system are close together, or that they are all of similar sizes. This activity in combination with the activity Moons in Comparison, can help educators address the common misconceptions that are prevalent. Additionally, for younger students, they may not realize that objects that are farther away look smaller. Size To model the system accurately, you would need to use a 1 sphere to represent the Sun results in a distance to Pluto of over 350 feet (more than a football field away), and most of the planets would appear no larger than tiny specks. It is still a 2-dimensional representation that does not fully capture the difference in distances between these objects. Teacher and Student Engagement, 2017 2

Models like this one, help scientists and engineers study phenomenal that are too large to observe in the lab. However models have their limitations. For this model, if you strictly convert the Sun-Earth- Moon system dimensions (diameter of objects and distances of objects) the Sun would be the 48 inch ball, the Earth (0.5 inch ball) and the Moon (0.1 inch ball, size of a grain of rice) would be 1.25 football fields away. Therefore we enlarged the Earth-Moon system so students will be able to have an easier time visualizing the Moon being apparently the same size as the Sun. Types of solar eclipses: A total solar eclipse occurs when the Sun and Moon are exactly in line with the Earth and their apparent sizes are equal, allowing the much fainter solar corona to be visible. During any one eclipse, totality occurs at best only in a narrow track on the surface of Earth. Where an annular solar eclipse occurs when the Sun and Moon are exactly in line with the Earth, but the apparent size of the Moon is smaller than that of the Sun. Hence the Sun appears as a very bright ring, or annulus, surrounding the dark disk of the Moon. If you want to connect to algebra (not necessary for the activity): In astronomy, the apparent sizes of celestial objects are often given in terms of their angular diameter as seen from Earth, rather than their actual sizes. Since these angular diameters are typically small, it is common to present them in arcseconds. An arcsecond ( ) is 1 180 of 1 degree, and a radian is degrees, so 1 radian = 3,6000 π 3,600 180 arcseconds, which is about 206,265 arcseconds. π Therefore, the angular diameter of an object with physical diameter d at a distance D, expressed in arcseconds, is given by δ = (206,265)d arcseconds. D When calculated, the Sun s angular diameter is between 31 31 and 32 33 depending on where the Earth is in its orbit. The Moon s angular diameter has a larger range 29 20 to 34 6. This means at times the Sun and the Moon s apparent sizes are the same. When both apparent sizes and the objects physically align; places on Earth will observe a total solar eclipse. When the Moon appears to be slightly smaller than the Sun and the objects physical align, leaving the Sun s visible outer edges, this is called an annular solar eclipse. Activity Part 1: Introduction (15 minutes) 1. Begin by letting students know that you will be exploring how the distance between the Sun, moon, and Earth might affect what we see of them from planet Earth. Teacher and Student Engagement, 2017 3

2. If this is your first time addressing scale in the solar system, consider having your students do the assessment probe, Sizing up the moon. 3. If your students are already familiar with the relative sizes of the Earth, Moon and Sun, have them begin by i. Turn-and-talk to a fellow student scientist, answering the questions: What have you observed about the Moon and Sun in the sky? How big do they look? ii. Ask students to make a sketch or write some notes about how far apart they think the Sun, Moon, and Earth are from each other. 4. Then, share with students that today you will be using a scientific practice, called modeling to explore how the distance between the Sun, Moon, and Earth might affect what we see of them from planet Earth. For any scale model activity, it is useful to start by exploring the notion of models. Playthings, such as dolls or toy cars, can be a useful reference for talking about scale models. 5. Split the students up into small groups. Share the packages of supplies with each group. Ask them to look at the objects and think about how a scientist might use them to explore the question How does the distance between the Sun, Moon, and Earth affect what we see of them from planet Earth? 6. Give them some time to play with the supplies, and develop an idea for how they might be used to model the size and distance of the objects. (48 inch ball = Sun, 4.5 inch ball = Earth, and the 0.48 inch ball = Moon) 7. Have students choose which role they will be: Earth, Sun, Moon and observer (if you have groups of 4). Each solar system object can hold the appropriate ball. The observer can hold the bag with the other items. Part 2: Earth-Moon system (10 minutes) 1. Let students know we will be exploring the Earth-Moon distances first. Have one person hold the Moon and, and have one person stand in front of the Moon holding the Earth. Other students can stand alongside watching to make predictions and observations. 2. Ask students to estimate the approximate distances between Earth and the Moon. To do this have Earth stand still and have the Moon move slowly away. Make a mark on the ground each time a student thinks they are the correct distance apart. 3. Ask students questions such as: What did you notice about the size the Moon or Earth as it moved away from you? Did it look bigger, smaller, or does it look the same? 4. If needed, repeat the Moon walking away from the Earth so that students can see that as an object moves farther way it appears to become smaller. To help reinforce this idea, ask student if the object is really getting smaller? 5. Let students know we will be using this idea of objects father way appear to look smaller in the next part of the activity. Teacher and Student Engagement, 2017 4

Part 3: Sun-Earth-Moon system (15 minutes) Modeling Eclipses with Size and Distance Scales 1. Have students grab the Sun ball. If you have an observer instruct them to stand next to the Earth at all times. 2. Bring out the 11.25 foot string. Let students know this is the average distance between the Earth and the Moon at this scale. Instruct the Earth and Moon students to always hold one end of the string and keep it tight. This will help them be at the correct distance between them at all times. 3. Then inform them that we live a special place in our Solar System, where the Sun and the Moon appear to be the same size in our sky. Ask students, how might we make the tiny Moon and the large Sun appear to be the same size if we are looking from the Earth? That is the challenge! 4. Allow your students time to figure out how to create this model themselves, without your instructions. The model creation process should resemble something like this: a. the Sun to stand at one end of the field. b. the Moon position itself between the Earth and Sun. c. the observer to stand next to the Earth at all times. d. the Moon-Earth system walks away from the Sun until the Earth/observer perceives the Sun and the Moon to be the same size. This will be 164 yards. 5. Once your students have the model created, let students switch roles to see the different perspectives. Wrap-Up 1. Lead the student discussion to students noticing the Moon could block out the Sun completely. Introduce the definition of a solar eclipse. a. Solar eclipse is a type of eclipse that occurs when the Moon passes between the Sun and Earth, and the Moon fully or partially the Sun. 2. Have students go back to their original ideas about the sizes and distances of the Moon, Earth and Sun. Ask them to discuss with each other: How have your ideas changed? Was there anything that surprised you? Extensions Creating different types of eclipses: If you have one group of students who get done early, or you have the time, pose some challenge questions to your students: 1. What would happen if the Moon were two feet closer to the Earth? How might that change what is seen from Earth? Does the Moon still cover the Sun? 2. What would happen if the Moon were four steps away from the Earth? Would the Earth still cover the Sun? Teacher and Student Engagement, 2017 5

o Answer: the Moon does not block out the Sun completely when it is a little farther away. Explain this is a different type of eclipse called an Annular Eclipse. Next Generation Science Standards Science and Engineering Practices Disciplinary Core Ideas Cross Cutting Concepts Developing and Using Models Develop and use models to describe phenomena Using Mathematics and Computational Thinking Apply mathematical concepts and/or processes to scientific and engineering questions and problems ESS1.B: Earth and the Solar System The solar system consists of the Sun and a collection of objects including planets, their moons, and asteroids that are held in orbit around the Sun by its gravitational pull on them. Scale, Proportion and Quantity Time, space and energy phenomena can be observed at various scales using models to study systems that are too large or too small. Systems and System Models Can describe a system in terms of its component and their interactions Models can be used to represent systems and their interactions Related Performance Expectations The activity outlined here is just one step toward reaching the Performance Expectations listed below. Additional supporting materials and lesson will be required. MS-ESS1-2: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system MS-ESS1-3: Analyze and interpret data to determine scale properties of objects in the solar system Teacher and Student Engagement, 2017 6