Thermal Cube. Custom-built Heat Flux Sensor

Similar documents
Thermal Cube. Custom-built Heat Flux Sensor

Quantification of Performance of Wildfire Chemicals using Custom-Built. Heat Flux Sensors

MCS 7 Chia Laguna, Cagliari, Sardinia, Italy, September 11-15, 2011

IGNITABILITY ANALYSIS USING THE CONE CALORIMETER AND LIFT APPARATUS

Model 791 Calibration Plate for Tiltmeters and Inclinometers

SMD Switch SI-C3436A General specification. Soldering conditions Reflow Soldering condition. Standard Reel Dimensions (mm) Packing specification

Richter Optica. Instructions for Model: S850 Stereo Zoom Microscope

Tflex HD700 Thermal Reliability Report

Temperature Profile for 36 Marker Spheres on 3M 788 ACCR Conductor 3M Company

HL-800K Infrared Laser Thermometer. -50 C to +800 C (13:1 ratio) User Manual

HFM 100 Series. Thermal Conductivity Meter for measurement of insulation and construction materials.

INFRARED THERMOMETER Model : TM-959

TEST METHOD FOR STILL- AND FORCED-AIR JUNCTION-TO- AMBIENT THERMAL RESISTANCE MEASUREMENTS OF INTEGRATED CIRCUIT PACKAGES

Melton Series. Owners Manual. Lab Centrifuge. Model # s A C, A C, B C, B C, C C, C C, D C, D C

Installation guide 862 MIT / MIR

CRYOGENIC CONDUCTION COOLING TEST OF REMOVABLE PANEL MOCK-UP FOR ITER CRYOSTAT THERMAL SHIELD

VX25 Enclosure System. Technical documentation PE conductor connection, current carrying capacity

Installation Manual. Installation manual for PerfectEnergy Solar Modules. Content

ISOCON-6. 24V AC or DC POWERED ISOLATING SIGNAL CONVERTER

HT600 Dat e Code: 2 - HT MW Purchase Date: PLEASE RETAIN THIS INSTRUCTION MANUAL FOR FUTURE REFERENCE. All Rights Reserved

Portable Friction Meter HEIDON Tribo Gear μs Type 94i-Ⅱ. Operating Manual

CEEN 3320 Behavior & Properties of Engineering Materials Laboratory Experiment No. 1 Measurement Techniques

User Manual. Stick-Style Water-Resistant Infrared Thermometer with 8:1 Distance-to-Sight Ratio. Model with NIST-Traceable Calibration

PUB NLH 185 Island Interconnected System Supply Issues and Power Outages Page 1 of 9

Stick-Style Water-Resistant Infrared Thermometer for Foodservice Applications with 4:1 Distance-to-Sight Ratio Model

Assembly Instructions for the 1-Wire Weather Station V2.0/V3.0

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE

E8EB-N0C2B E8EB-N0B2B

Dr. Michael Müller. Thermal Management for LED applications

PRODUCT SPECIFICATION

Ultraviolet LEDS as a Source of Emission for Resist Exposure on Printed Circuit Boards

Specification LW514. Drawn Approval Approval. Rev. 02 December 서식번호 : SSC-QP (Rev.00)

IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation

3B SCIENTIFIC PHYSICS

Sensors and Actuators Sensors Physics

Protective Coatings: Non-lead orange paint RAL red (optional) non-lead paint Hot dipped galvanized conforming to ASTM A-153.

Tick the box next to those resources for which the Sun is also the source of energy.

Specification LY530. Drawn Approval Approval. Rev. 08 December 서식번호 : SSC-QP (Rev.00)

Sensing, Computing, Actuating

product manual H-3220A Benkelman Beam

Electron Microscopy Sciences INSTRUCTION MANUAL. Stereo Microscopes Non-illuminated Stands

Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB

Altazimuth Mount. Altazimuth Mount

THE use of radioactive isotopes in medical institutions is growing continuously.

EM375 MECHANICAL ENGINEERING EXPERIMENTATION THERMOCOUPLE LABORATORY

AIR CONDITIONER (SPLIT TYPE) SERVICE MANUAL

WS-7047TWC Wireless 433 MHz Weather Station With Rainfall and Temperature. Instruction Manual

Laboratory Evaluation Report for: Dielectric Pipe Unions

SFI TECHNICAL BULLETIN 3.2 EFFECTIVE: FEBRUARY 26, 2014 *

Kalinka Optics Warehouse User Manual Kobra AK Side Mount Red Dot Sight Manual

FLT5A FLT5A. abc. abc. Thermometer User Guide. Thermometer User Guide. Internet:

Telescopic auto dimension measuring system

Specification LR530. Drawn Approval Approval. Rev. 08 December Document No. : SSC-QP (Rev.00)

Lecture 36: Temperatue Measurements

What You Need to Get Started INSTALLATION GUIDE

Active Cooling and Thermal Management of a Downhole Tool Electronics Section

16 Input AC Block I/O Module

1W, 1206, Low Resistance Chip Resistor (Lead free / Halogen Free)

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT

Specification LW520A

PRODUCT DATA SHEET. Eagle Eye Outdoor LED Module 5700K. RoHS Compliant. CUSTOMER :. DATE : REV : Rev. 2.0.

TABLE OF CONTENTS. IC Recorder. Model No. RR-US300E. Colour (S)...Silver Type

CS Series. Capacitance Type. Type. Proximity Sensor. Features

N) manual. Biomaster Operating manual

Apparatus to measure high-temperature thermal conductivity and thermoelectric power of small specimens

Veerapong Kanchanawongkul*

RS INDUSTRY LIMITED. RS Chip Array ESD Suppressor APPROVAL SHEET. Customer Information. Part No. : Model No. : COMPANY PURCHASE R&D

3/4W, 2010 Low Resistance Chip Resistor

Cooling Water Flow Regulator

Specification LR521. Drawn Approval Approval. Rev. 05 December 서식번호 : SSC-QP (Rev.00)

Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)

U LED modules, converters and systems GENERAL ILLUMINATION. Umodule SPOT P320-3 umodule SPOT PHASED OUT 46,5 39,5 35,5 NTC NTC LED + LED 8,5 4,5 8,5

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance

Peltier Application Note

Reflectec Thermal Fabric & Reflectec Fiberboard

Capacitors with screw terminals Long life industrial 85 C 12000h

PRODUCT DATA SHEET. Eagle Eye Outdoor LED Module 3000K. RoHS Compliant. CUSTOMER :. DATE : REV : Rev. 1.0.

Rapid Averaging Probe (RAP)

Automatic Level Maintenance Manual SAL-XX W/ AIR DAMPENED COMPENSATOR

Characterization of convective heating in full scale wildland fires

Diffuse Thermal Radiation Focusing Device

Surface Mount UV LED. NUVA33 Series PART NUMBERING SYSTEM. WAVELENGTH CODES Code Nominal Wavelength

AN3002 Thermocouple measurement

Owner's Manual NSL100B BUILDERS LEVEL NSL500B TRANSIT LEVEL

MODEL NAME : LLDMWW0-15K*0*A

GLOWING AND FLAMING AUTOIGNITION OF WOOD

HOW ADVANCED PYROMETERS INCREASE THERMAL PROCESS REPEATABILITY AND PRODUCT QUALITY

Determine the Inside Wall Temperature of DSTs using an Infrared Temperature Sensor

CDS. high density spring connection

Optimization of Electrically Cooled Complex HPGe Detector

Thermal Coatings for In-vacuum Radiation Cooling LIGO-T C R. Abbott, S. Waldman, Caltech 12 March, 2007

Experimental Analysis of Natural Convection Heat Transfer from Smooth and Rough Surfaces

AREP Series Aluminum Solid Electrolytic Capacitors Aluminum Solid Electrolytic Capacitors

Analog Technologies. ATEC1 49 Circular TEC Modules

Instruction Manual SEFRAM Thermal Camera

SECTION 1 - WHAT IS A BTU METER? BTU's = Flow x ΔT Any ISTEC BTU Meter System consists of the following main components:

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook.

Restoration of Eureka Clock Serial Number 4793

Product Series Specification Document

Commercial Generator Parts Catalog. PROTEC Series

Transcription:

Thermal Cube Custom-built Heat Flux Sensor Specifications and Construction MR. RAZIM REFAI MR. SHAMMAWI ANDERSON DR. ANDRÉ MCDONALD

Table of Contents 1. Introduction... 2 1.1 Specifications [1]... 2 1.2 Materials of Construction... 2 2. Thermal Cube Construction and Assembly... 3 2.1 Aluminum Block... 3 2.2 Thermocouples... 4 2.3 Thermal Cube Field Stand... 5 4. Data Analysis... 8 4.1 Errors... 9 5. Maintenance of the sensor... 10 6. Additional Considerations... 10 7. Limitation of Liability... 10 8. Engineering Drawings [2]... 11 8.1 Aluminum Block... 12 8.2 Main Housing... 13 8.3 Cover... 14 8.4 Leg Pole... 15 8.5 Field Stand... 16 8.6 Thermal Cube Stand: Assembled... 17 9. Voltage-to-Temperature Conversion... 18 10. References... 20 1

1. Introduction The heat flux sensor (hereafter referred to as Thermal Cube ) is a simple and effective device used to measure the thermal energy that is released during high heat load applications and that is incident on the sensor at a given location. The sensor uses a one-dimensional, finite-length scale, transient heat conduction model to estimate energy per unit area (in kw/m 2 ) that is incident upon it. The data obtained from the Thermal Cube will enable determination of the following: Transient heat flux Time to ignition (of vegetative fuels) The device is convenient to use due to its portability and small size. It is also inexpensive when compared to other heat flux sensors that are commercially available. 1.1 Specifications [1] Particulars Specifications Working Range (kw-m -2 ): 10 to 65 Response Time: 8 seconds @ 50 kw-m -2 Emissivity: ~ 0.95 Field of view: 180 degrees Cooling water temperature: N/A Cooling water flow: N/A 1.2 Materials of Construction The following components are required to fabricate the Thermal Cube: 1. 6063-T6 Aluminum block 2. Type-J, 30 gauge thermocouples (three) 3. M-board insulation 4. High-temperature black spray paint 5. Carbon steel 2

A data acquisition system will be required to collect the temperature data measured by the thermocouples. 2. Thermal Cube Construction and Assembly 2.1 Aluminum Block 1. Waterjet cut a rectangular 6063-T6 aluminum block to dimensions of 50.8 mm x 63.5 mm x 25.4 mm (2 in x 2.5 in x 1 in). 2. Drill four 2 mm (0.08 in) diameter holes on the top surface of the aluminum block as shown in Figure 1. The holes correspond to locations at x = 3.2 mm (2 holes), x =12.7 mm and x = 22.2 mm as shown in Section 8.1 of this manual. The distance between the two holes at x = 3.2 mm is 6.4 mm. 3. Spray the front and back sides of the block with high-temperature black spray paint (Krylon 1618 BBQ and Stove Paint, The Sherwin-Williams Company, Cleveland, OH, USA). Figure 1: Drawing of Aluminum block (all dimensions are in mm) [2] 3

2.2 Thermocouples Three J-Type thermocouples are used in the Thermal Cube to obtain transient temperature measurements. 1. Strip the insulation from the ends of the thermocouples using a wire stripper. 2. Solder the iron and constantan wires of one thermocouple (hereafter called the regular thermocouple ) at any one end. The iron and constantan wires being soldered should be from the same end of the thermocouple wire. 3. The remaining two thermocouples are wired according to Figure 2 to obtain the differential thermocouple. Solder the iron and constantan wires of each thermocouple at any end of the respective thermocouple wires to obtain the front face thermocouple and back face thermocouple. 4. At the other ends of the two thermocouples, solder the constantan wires from each thermocouple to each other to complete the connection. 5. Ensure that the thermocouples have been soldered properly. Test the thermocouples with a known temperature and a data acquisition system to ensure proper functionality. 6. Insert the soldered end of the regular thermocouple in the additional hole that is indicated in Figure 1. 7. Insert the front face thermocouple in the front face hole as shown in Figure 3. 8. Insert the back face thermocouple in the back face hole as shown in Figure 3. Figure 2: Differential Thermocouple Wiring Arrangement [2] 4

Figure 3: Top View of Aluminum Block 2.3 Thermal Cube Field Stand The Thermal Cube Field Stand consists of a main box, cover, leg pole and base plate. It serves as housing for the aluminum block, thermocouple wires, and the data acquisition system. 1. Use carbon steel to fabricate the main box, cover and leg pole. The engineering drawings for each of these components are available in Section 8 of this manual. 2. Weld the unthreaded end of the leg pole to the bottom surface of the main box. 3. Use steel to fabricate the base plate based on the engineering drawing present in the Section 8 of this manual. 4. Place the base plate on a horizontal surface and screw the threaded end of the leg pole (with the main box welded on) on to the base plate. 5. Adjust the height of the leg pole (if required) by unscrewing the nut and bolt present on the leg pole. Upon extending the inner pole, screw back the nut and bolt in place. 6. Insulate the inside surfaces of the main box as well as the cover with M-board insulation (M-board, Industrial Insulation Group, Augusta, GA, USA) by press-fitting the M-board against the walls. 7. Place the aluminum block in the aluminum block holder (as shown in Figure 5) of the main box such that its front surface faces away from the main box and the surface containing the thermocouples is on top. 5

8. Ensure that the thermocouple wires are routed through the slit (shown in Figure 5) that is present at the top surface of the aluminum block holder and into the interior of the main box. 9. Place the data acquisition system in the main box (as shown in Figure 6) and connect it to the thermocouples. 10. Set the data acquisition system to read temperature values for the regular thermocouple and to read voltage values for the differential thermocouple. 11. Close the main box with the cover. Figure 4: Thermal Cube Field Stand 6

Figure 5: Slit for routing of thermocouples in the Main Box 7

Figure 6: Main box of the Thermal Cube Field Stand 4. Data Analysis 1. Obtain the temperature and voltage readings from the data acquisition system. 2. The temperature reading from the regular thermocouple gives the front face temperature T(d,t), where d is the depth into the sensor where the thermocouple is located (shown in Section 8.1) and t is time. 3. Convert the voltage reading from the differential thermocouple to a temperature value by using a voltage-temperature conversion equation available in the Section 9.). This temperature value gives the differential temperature ΔT: T T( d, t) T1( t), (4-1) 8

where T 1 (t) is the temperature of the back face of the sensor. Use Eq. (4-1) to calculate T 1 (t). Use the aforementioned temperature values, that is ΔT, T(d,t), and T 1 (t) in Eq. (4-2) to calculate the incident heat flux: 1 k[ T( d, t) T 1( t)] 4 4 " ncident( t) T( d, t) T1 ( t) 2T ( L d) q i Table 1 defines and describes the variables shown in Eq. (4-2). Table 1: List of Variables shown in Eq. (4-2) 4. (4-2) Variable Description Unit Comment q " incident Incident heat flux W-m -2 - t Time s - ε Emissivity - ~ 0.95 k Thermal conductivity of W-m -1 - C -1 200 sensor material L Thickness of sensor m - d Depth into sensor where the m - thermocouple is located σ Stefan-Boltzmann constant W-m -2 -K -4 5.67 x 10-8 W-m -2 -K -4 ΔT Differential temperature C - T Surrounding ambient C - temperature T 1 (t) Backside temperature C - T(d,t) Temperature at location d in the sensor C - 4.1 Errors Based on the manufacturer s specifications, the thermocouples have an inherent error of 1.1 C. The actual thermocouple error may be less than 1.1 C as this value represents the limit of error for the entire batch of thermocouples. These limits were used during error analysis to estimate the error in the worst case scenario. The error value is a maximum of 32% for high heat flux measurements (order of 43 kw/m 2 or higher). 9

5. Maintenance of the sensor The following items will help to ensure that the sensor provides accurate temperature measurements for estimation of the heat fluxes: 1. The front face of the aluminum block should be kept clean. Contaminants should be removed with a cloth. 2. Reapply the high-temperature black spray paint as necessary. 3. High temperature tape can be used to keep the M-board insulation in place, if required. 4. If the thermocouples are required to be held in place (in the holes), high temperature cement can be used at the top surface of the block. Ensure that no cement comes in contact with the iron/constantan wires of the thermocouples as well as no cement enters the holes in the aluminum block. 6. Additional Considerations 1. The Thermal Cube does not consist of a cooling fluid. Therefore, users must be careful while handling the device after exposure to heat loads since the cube may still be at an elevated temperature. 2. For repeatability of tests, the stand-off distance between the source of the heat load and the sensor should be maintained constant. 7. Limitation of Liability Claims for damages (personal and material), in respect of the Thermal Cube, are excluded, if they are due to one or more of the following reasons: 1. Use that is not in accordance with this manual; 2. Improper assembly and incorrect operation; 3. Faulty maintenance; 4. Non-compliance with the assembly and operating installations; 5. Non-approved structural changes to the unit or the individual components; 6. Installation of components which are not a part of the product; 10

7. Subsequent damage which occurred through further use of the product despite known defects; 8. Intentional damage; 9. Force majeure events. The user will indemnify and hold harmless FPInnovations and the authors of this manual for all losses and damages that occur from use of the thermal cube product that they fabricate. 8. Engineering Drawings [2] The following are the enclosed engineering drawings for the components of the Thermal Cube: i. Aluminum Block ii. Thermal Cube Stand: Main Box iii. Thermal Cube Stand: Cover iv. Thermal Cube Stand: Leg Pole v. Thermal Cube Stand: Field Stand vi. Thermal Cube Stand: Assembled 11

8.1 Aluminum Block 12

8.2 Main Housing 13

8.3 Cover 14

8.4 Leg Pole 15

8.5 Field Stand 16

8.6 Thermal Cube Stand: Assembled 17

9. Voltage-to-Temperature Conversion The voltage-to-temperature conversion equation for the J-type thermocouple is: T a, (9-1) 2 3 4 0 a1e a2e a3e where E is the voltage in microvolts and a n is the approximation coefficient obtained from calibration data [3], where n = 0, 1, 2, 3. If the voltage reading is negative, take its absolute value. Table 9-1 presents values of a n that should be used in Eq. (9.1) to find temperatures from voltage readings. 18

Temperature Range (ºC) Table 9-1: Approximation coefficients for voltage (µv) to temperature (ºC) conversion [3] a 0 a 1 a 2 a 3 a 4 Error Range (ºC) Exact- Approx. -200 to 0 0 1.8843850 x 10-2 -1.2029733 x 10-6 -2.5278593 x 10-10 -2.5849263 x 10-14 -.4 to.5-200 to 760 0 2.1155170 x 10-2 -3.3513149 x 10-7 1.2443997 x 10-11 -1.5227150 x 10-16 -6 to 7-200 to 1200 0 2.1676850 x 10-2 -2.1844464 x 10-7 3.9094347 x 10-12 -2.4303017 x 10-17 -14 to 10-20 to 500 0 1.9745056 x 10-2 -1.8094256 x 10-7 7.8777919 x 10-12 -1.1897222 x 10-16 -.07 to.06 0 to 400 0 1.9750953 x 10-2 -1.8542600 x 10-7 8.3683958 x 10-12 -1.3280568 x 10-16 -.03 to.05 0 to 760 0 1.9323799 x 10-2 -1.030620 x 10-7 3.7084018 x 10-12 -5.1031937 x 10-17 -.9 to.7 0 to 1200 0 1.8134974 x 10-2 -5.6495930 x 10-8 -2.4644023 x 10-12 2.1141718 x 10-17 -3 to 4 400 to760 9.2808351 x 10 1 5.4463817 x 10-3 6.5254537 x 10-7 -1.3987013 x 10-11 9.9364476 x 10-17 -.03 to.03 400 to 1200-1.1075293 x 10 2 2.8651303 x 10-2 -2.9758157 x 10-7 2.5945419 x 10-12 -4.9012035 x 10-18 -1.3 to 1.6 600 to 760 1.8020713 x 10 2-4.5284199 x 10-3 1.0769294 x 10-6 -2.1962321 x 10-11 1.5521511 x 10-16 -.001 to.001 760 to 1200-6.3826860 x 10 2 7.4068749 x 10-2 -1.7177773 x 10-6 2.1771293 x 10-11 -9.9502571 x 10-17 -.15 to.11 19

10. References [1] E. Sullivan, Measuring Energy Transfer from Wildland Forest Fires, University of Alberta, MSc. Thesis, 2014. [2] S. Anderson, Quantification of Performance of Wildfire Chemicals using Custom-Built Heat Flux Sensors, University of Alberta, MSc. Thesis, 2015. [3] R. Powell, W. Hall, C. Hyink, L. Sparks, G. Burns, M. Scorger, H. Plumb, Thermocouple Reference Tables Based on the IPTS-68, Stamford, Connecticut, Omega Press, pp. 350.