Phase Diagrams. NC State University

Similar documents
Free energy dependence along the coexistence curve

The Second Law of Thermodynamics (Chapter 4)

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

CHAPTER 4 Physical Transformations of Pure Substances.

Phase Change (State Change): A change in physical form but not the chemical identity of a substance.

Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas

At this point, we've developed the tools and basic concepts necessary to apply

Chapter 12 Intermolecular Forces of Attraction

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K

Chemistry 163B. One-Component. Phase Diagram Basics

Phase Equilibria in a One-Component System I

B. Correct! Good work. F = C P + 2 = = 2 degrees of freedom. Good try. Hint: Think about the meaning of components and phases.


WEEK 6. Multiphase systems

For an incompressible β and k = 0, Equations (6.28) and (6.29) become:

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Vapor Pressure is determined primarily from!vaph!vaph depends on the intermolecular forces

Phase Equilibrium: Preliminaries

Problem Set 10 Solutions

CHEM-UA 652: Thermodynamics and Kinetics

General Physical Chemistry I

Exam 3, Chemistry 481, 8 December 2017

1. Heterogeneous Systems and Chemical Equilibrium

Lecture 4-6 Equilibrium

CHEM-UA 652: Thermodynamics and Kinetics

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11. Intermolecular Forces and Liquids and Solids. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

6 Physical transformations of pure substances

Let's look at how different properties affect vapor pressure. P =0 P =vapor pressure P =vapor pressure. first all liquid

Liquids. properties & structure

Application of Thermodynamics in Phase Diagrams. Today s Topics

Business. Business. Multiphase Systems Ch. 6. P vs T Diagram: Water (pure component) P vs T Diagram: CO 2 LYNN ORR

Lecture Notes 2: Physical Equilibria Phase Diagrams

Chapter 19 Chemical Thermodynamics

Chem 112 Dr. Kevin Moore

Exam 1. Name: Recitation Section Lenny.: 6:30 7:30 (circle one): Greg.: 6:30 7:30 Student Number: Nic.: 6:30 7:30

Chapter 4. The Physical transformations of pure substances Fall Semester Physical Chemistry 1 (CHM2201)

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces

12. Heat of melting and evaporation of water

Practice Midterm Exam 1 March, 2011

Ch. 9 Liquids and Solids

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

Intermolecular Forces and Liquids and Solids

Phase Equilibria I. Introduction. Heat and Phase Changes

You MUST sign the honor pledge:

Phase Diagrams. Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur India

Lecture 7 Enthalpy. NC State University

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

We can see from the gas phase form of the equilibrium constant that pressure of species depend on pressure. For the general gas phase reaction,

Intermolecular Forces and Liquids and Solids

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes)

Chapter 19 Chemical Thermodynamics Entropy and free energy

Thermochemistry Chapter 8

The Clausius-Clapeyron and the Kelvin Equations

Liquids, Solids, and Phase Changes

Homework 01. Phase Changes and Solutions

Chapter 5. On-line resource

Ch. 19 Entropy and Free Energy: Spontaneous Change

Intermolecular Forces and Liquids and Solids Chapter 11

Temperature C. Heat Added (Joules)

CHAPTER 9: LIQUIDS AND SOLIDS

Last Name or Student ID

Solutions to Problem Set 9

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state

CHM 2046 Final Exam Review: Chapters 11 18

Exam Thermodynamics 2 9 November 2017

Intermolecular Forces and Liquids and Solids

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

CHM 1046 FINAL REVIEW

General Physical Chemistry I

Chapter Seventeen Thermodynamics: Spontaneity, Entropy, and Free Energy

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

Physical Chemistry I Exam points

* The actual temperature dependence for the enthalpy and entropy of reaction is given by the following two equations:

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

There are five problems on the exam. Do all of the problems. Show your work

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 20 - Spontaneous Change and Free Energy

3.012 PS 7 Thermo solutions Issued: Fall 2003 Graded problems due:

Chapter 11. Intermolecular Forces and Liquids & Solids

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Lecture 26: Liquids 1: phase changes & heat capacity

Introduction: Introduction. material is transferred from one phase (gas, liquid, or solid) into another.

CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014

Chemistry 163B, Winter 2014 Lectures Introduction to Phase Diagrams

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

Chapter Eighteen. Thermodynamics

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Transcription:

Chemistry 433 Lecture 18 Phase Diagrams NC State University

Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function of temperature and pressure. In the Figure shown below the regions of space indicate the three phases of carbon dioxide. The curved lines indicate the coexistence curves. Note there is a unique triple point. m) ssure (atm Pres

Degrees of freedom Within any one of the single-phase regions both temperature and pressure must be specified. Because two thermodynamic variables can be changed independently we say that the system has two degrees of freedom. Along any of the coexistence curves the pressure and temperature are coupled, i.e. any change in the temperature implies a change in pressure to remain on the line. Thus, along the curves there is only one degree of freedom. The triple point is a unique point in phase space and there is only one set of values of pressure and temperature consistent with the triple point. Thus, we say that at the triple point the system has zero degrees of freedom. If we follow the liquid-vapor coexistence curve towards higher temperature we find that it ends at the critical point. Above the critical point there is no distinction between liquid and vapor and there is a single fluid phase.

Degrees of freedom How many degrees of freedom are there in the liquid phase? A. 0 B. 1 C. 2 D. 3

Degrees of freedom How many degrees of freedom are there in the liquid phase? A. 0 B. 1 C. 2 D. 3

Free energy dependence along the coexistence curve In a system where two phases (e.g. liquid and gas) are in equilibrium the Gibbs energy is G = G l + G g, where G l and G g are the Gibbs energies of the liquid phase and the gas phase, respectively. If dn modes (a differential amount of n the number of moles) are transferred from one phase to another at constant temperature and pressure, the differential Gibbs energy for the process is: dg = G g n g P,T dn g + G l n l P,T dn l The rate of change of free energy with number of moles is called the chemical potential.

The significance of chemical potential of coexisting phases We can write the Gibbs free energy change using the following notation: dg = μ g dn g + μ l dn l Note that if the system is entirely composed of gas molecules the chemical potential μ g will be large and μ l will be zero. Under these conditions the number of moles of gas will decrease dn g < 0 and the number of moles of liquid will increase dn l > 0. Since every mole of gas molecules converted results in a mole of liquid molecules we have that: dn g = -dn l

Coexistence criterion In terms of chemical potential, the Gibbs energy for the phase equilibrium is: dg = μ g μ l dn g Since the two phases are in equilibrium dg = 0 and since dn g 0 we have μ g = μ l. In plain language, if two phases of a single substance are in equilibrium their chemical potentials are equal. If the two phases are not in equilibrium a spontaneous transfer of matter from one phase to the other will occur in the direction that minimizes dg. Matter is transferred from a phase with higher chemical potential to a phase with lower chemical potential consistent with the negative sign of Gibb's free energy for a spontaneous process.

Solid-liquid coexistence curve To derive expressions for the coexistence curves on the phase diagram we use the fact that the chemical potential is equivalent in the two phases. We consider two phases α and β and write μ α (T,P) = μ β (T,P) Now we take the total derivative of both sides μ α α β dp + μ dt = μβ dp + μβ β P T T P P T T P dt The appearance of this equation is quite different from previous equations and yet you have seen this equation before. The reason for the apparent difference is the symbol μ. Remember that μ for a single substance is just the molar free energy.

Degrees of freedom What are the degrees of freedom in the liquid phase? A. Temperature and Volume B. Temperature and Pressure C. Pressure and Volume D. All of the above

Degrees of freedom What are the degrees of freedom in the liquid phase? A. Temperature and Volume B. Temperature and Pressure C. Pressure and Volume D. All of the above

The Clapeyron equation Substituting these factors into the total derivative above we have V m α dp S m α dt = V m β dp S m β dt Solving for dp/dt gives dp S β α m S m dt = V β α m V m = Δ trss m = Δ trsh m Δ trs V m TΔ trs V m This equation is known as the Clapeyron equation. It gives the two-phase boundary curve in a phase diagram with Δ trs H and Δ trs V between them. The Clapeyron equation can be used to determine the solid-liquid curve by integration. P 1 P 2 dp = Δ trsh m Δ trs V m Starting with a known point along the curve (e.g. the triple point or the melting temperature at one bar) we can calculate the rest of the curve referenced to this point. T 1 T 2 dt T

The Clapeyron equation The integrated form of the Clapeyron equation is: Δ H T A. P 2 P 1 = Δ trs m ln trs V 2 m T 1 B. ln P 2 P = Δ trsh m T 2 P1 Δ V ln T trs m T1 C. P 2 P 1 = Δ trsh m 1 Δ V 1 trs m T1 1 T 2 D. ln P 2 P 1 = Δ trsh m Δ trs V m 1 T1 1 T 2

The Clapeyron equation The integrated form of the Clapeyron equation is: Δ H T A. P 2 P 1 = Δ trs m ln trs V 2 m T 1 B. ln P 2 P = Δ trsh m T 2 P1 Δ V ln T trs m T1 C. P 2 P 1 = Δ trsh m 1 Δ V 1 trs m T1 1 T 2 D. ln P 2 P 1 = Δ trsh m Δ trs V m 1 T1 1 T 2

The liquid-vapor and solidvapor coexistence curves The Clapeyron equation cannot be applied to a phase transition to the gas phase since the molar volume of a gas is a function of the pressure. Making the assumption that V g l mg >> V ml we can use the ideal gas law to obtain a new expression for dp/dt. dp Δ trs H m PΔ trsh m dt = g = TV m RT 2 The integrated form of this equation P 2 T 2 dp Δ trs H m P RT dt 2 P 1 = T 1 yields the Clausius-Clapeyron equation. ln P 2 P 1 = Δ trsh m R 1 T 1 1 T 2 = Δ trsh m R T 2 T 1 T 1 T 2

Applying the Clausius- Clapeyron equation If we use ΔH of evaporation the C-C C equation can be used to describe the liquid-vapor coexistence curve and if we use ΔH of sublimation this equation can be used to describe the solid-vapor curve. The pressure derived from the C-C equation is the vapor pressure at the given temperature. Applications also include determining the pressure in a high temperature vessel containing a liquid (e.g. a pressure cooker). If you are given an initial set of parameters such as the normal boiling point, for example you may use these as T 1 and P 1. Then if you are given a new temperature T 2 you can use the C-C Cto calculate P 2.

Conceptual Question The key assumptions for the Clausius-ClapeyronClapeyron equation that defines the liquid-vapor and solid-vapor coexistence curves are: A. V mg >> V m l,v ms >> V m g B. V l g ml >> V g m,v mg >> V s m C. V ms >> V m g,v ml >> V m g D. V mg >> V m l,v mg >> V m s

Conceptual Question The key assumptions for the Clausius-ClapeyronClapeyron equation that defines the liquid-vapor and solid-vapor coexistence curves are: A. V mg >> V m l,v ms >> V m g B. V l g ml >> V g m,v mg >> V s m C. V ms >> V m g,v ml >> V m g D. V mg >> V m l,v mg >> V m s

Conceptual Question Which expression can be used to determine the coexistence boundary of two phases: S A. dp dt = Δ trss m Δ trs V m B. dp = Δ trsh m dt Δ trs V m C. dg dt = Δ trss m Δ trs V m D. dg dt = Δ trsh m Δ trs V m

Conceptual Question Which expression can be used to determine the coexistence boundary of two phases: S A. dp dt = Δ trss m Δ trs V m B. dp = Δ trsh m dt Δ trs V m C. dg dt = Δ trss m Δ trs V m D. dg dt = Δ trsh m Δ trs V m

Constructing the phase diagram for CO 2 We can use the Clapeyron and Clausius-Clapeyron equations to calculate a phase diagram. For example, we can begin with the CO 2 diagram shown above. The triple point for CO 2 is 5.11 atm and 216.15 K. The critical point for for CO 2 is 72.85 atm and 304.2 K. We also have the following data Transition Δ trs H o (kj/mol) T trs (K) Fusion 8.33 217.0 Sublimation 25.23 194.6 Note that we can calculate the enthalpy of sublimation from Δ vap H o = Δ sub H o - Δ fus H o = 16.9 kj/mol. ρ solid = 1.53 g/cm 3 and ρ liquid = 0.78 g/cm 3, respectively. The density ρ = m/v = nm/v so the molar volume is V m = V/n = M/ρ where M is the molar mass. In units of L/mole we have V s m = 44 g/mole/[1530 g/l] = 0.02870287 V l m = 44 g/mole/[780 g/l] = 0.0564 Δ fus V = V l m -V s m = 0.0564-0.0287 = 0.0277 L/mole

Constructing the phase diagram for CO 2 Starting with the triple point we use the Clausius-Clapeyron Clapeyron equation to calculate the liquid-vapor coexistence curve. P = 5.11exp{Δ vap H/R[T 216.15]/216.15T} P = 5.11exp{2,032[T 216.15]/216.15T} 15]/216 15T} Notice that if we were to calculate the critical pressure using this formula we would obtain 77.3 atm which is about 5 atm larger than the experimental number. There are several sources of inaccuracy including mainly our neglect of the temperature dependence of the enthalpy. We can also begin a the critical point P = 72.8 exp{δ vap H/R[T 304.2]/304.2T} P = 72.8 exp{2,032[t 304.2]/304.2T} 2T}

Constructing the liquid-vapor curve P = 5.11exp{2032[T 216.15]/216.15T} Liquid-vapor P (atm) T (K) 5.11 216.15 m) ure (atm Pressu

Constructing the liquid-vapor curve P = 5.11exp{2032[T 216.15]/216.15T} Liquid-vapor P (atm) T (K) 5.11 216.15 6.03 220 9.0 230 Pressu ure (atm m)

Constructing the liquid-vapor curve P = 5.11exp{2032[T 216.15]/216.15T} Liquid-vapor P (atm) T (K) 5.11 216.15 6.03 220 9.0 230 13.0 240 Pressu ure (atm m)

Constructing the liquid-vapor curve P = 5.11exp{2032[T 216.15]/216.15T} Liquid-vapor P (atm) T (K) 5.11 216.15 6.03 220 9.0 230 13.0 240 24.9 260 Pressu ure (atm m)

Constructing the liquid-vapor curve P = 5.11exp{2032[T 216.15]/216.15T} Liquid-vapor P (atm) T (K) 5.11 216.15 6.03 220 9.0 230 13.0 240 24.9 260 41.0 280 Pressu ure (atm m)

Constructing the liquid-vapor curve P = 5.11exp{2032[T 216.15]/216.15T} Liquid-vapor P (atm) T (K) 5.11 216.15 6.03 220 9.0 230 13.0 240 24.9 260 41.0 280 63.7 300 72.8 304 Pressu ure (atm m)

Constructing the solid-vapor curve Starting again at the triple point P = 5.11exp{Δ sub H/R[T 216.15]/216.15T} 15]/216 15T} P = 5.11exp{3034[T 216.15]/216.15T} Solid-vapor P (atm) T (K) 5.11 216.15 (atm) essure ( Pre

Constructing the solid-vapor curve Starting again at the triple point P = 5.11exp{Δ vap H/R[T 216.15]/216.15T} 15]/216 15T} P = 5.11exp{3034[T 216.15]/216.15T} Solid-vapor P (atm) T (K) 5.11 216.15 3.38 210 1.64 200 Pre essure (atm)

Constructing the solid-vapor curve Starting again at the triple point P = 5.11exp{Δ vap H/R[T 216.15]/216.15T} 15]/216 15T} P = 5.11exp{3034[T 216.15]/216.15T} Solid-vapor P (atm) T (K) 5.11 216.15 3.38 210 1.64 200 0.725 190 0.298 180 Pre essure (atm)

Constructing the solid-vapor curve Starting again at the triple point P = 5.11exp{Δ vap H/R[T 216.15]/216.15T} 15]/216 15T} P = 5.11exp{3034[T 216.15]/216.15T} Solid-vapor P (atm) T (K) 5.11 216.15 3.38 210 1.64 200 0.725 190 0.298 180 0.111 170 Pre essure (atm)

Constructing the solid-liquid curve Using the Clapeyron equation we calculate: P = 5.11 + [Δ fus H/Δ fus V] ln{t/216.15} P = 5.11 + 2,967 ln{t/216.15} 15} Solid-liquid P (atm) T (K) 5.11 216.15 (atm) essure ( Pre

Constructing the solid-liquid curve Using the Clapeyron equation we calculate: P = 5.11 + [Δ fus H/Δ fus V] ln{t/216.15} P = 5.11 + 2,967 ln{t/216.15} 15} Solid-liquid P (atm) T (K) 5.11 216.15 58.0 220 Pre essure (atm)

Constructing the solid-liquid curve Using the Clapeyron equation we calculate: P = 5.11 + [Δ fus H/Δ fus V] ln{t/216.15} P = 5.11 + 2,967 ln{t/216.15} 15} Solid-liquid P (atm) T (K) 5.11 216.15 58.0 220 124.2 230 Pre essure (atm)

Constructing the solid-liquid curve Using the Clapeyron equation we calculate: P = 5.11 + [Δ fus H/Δ fus V] ln{t/216.15} P = 5.11 + 2,967 ln{t/216.15} 15} Solid-liquid P (atm) T (K) 5.11 216.15 58.0 220 124.2 230 319 240 559 260 780 280 987 300 1180 320