EXTRACT THE PLASTIC PROPERTIES OF METALS US- ING REVERSE ANALYSIS OF NANOINDENTATION TEST

Similar documents

An Example file... log.txt

Pose Determination from a Single Image of a Single Parallelogram

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials

A Robust Adaptive Digital Audio Watermarking Scheme Against MP3 Compression

APPARENT AND PHYSICALLY BASED CONSTITUTIVE ANALYSES FOR HOT DEFORMATION OF AUSTENITE IN 35Mn2 STEEL

This document has been prepared by Sunder Kidambi with the blessings of

â, Đ (Very Long Baseline Interferometry, VLBI)

Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

EFFECT OF PILE-UP ON THE MECHANICAL CHARACTERISTICS OF STEEL WITH DIFFERENT STRAIN HISTORY BY DEPTH SENSING INDENTATION

Application of ICA and PCA to extracting structure from stock return

NOTICE: this is the author s version of a work that was accepted for publication in Mechanics of Materials. Changes resulting from the publishing

Surface Modification of Nano-Hydroxyapatite with Silane Agent

Extraction of Plastic Properties of Aluminum Single Crystal Using Berkovich Indentation

2. Experiments. 3. Results and discussion

Influence of friction in material characterization in microindentation measurement

Mathematical Analysis on the Uniqueness of Reverse Algorithm for Measuring Elastic-plastic Properties by Sharp Indentation

Charbel Moussa, Xavier Hernot, Olivier Bartier, Guillaume Delattre, Gérard Mauvoisin. To cite this version:

Ä D C Ã F D {f n } F,

Ú Bruguieres, A. Virelizier, A. [4] Á «Î µà Monoidal

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Price discount model for coordination of dual-channel supply chain under e-commerce

Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su. ME 563: Nonlinear Finite Element Analysis.

Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip

Mechanics of Materials

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

An Introduction to Optimal Control Applied to Disease Models

Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

COMPUTATIONAL MODELING OF THE FORWARD AND REVERSE PROBLEMS IN INSTRUMENTED SHARP INDENTATION

A Double-objective Rank Level Classifier Fusion Method

F O R SOCI AL WORK RESE ARCH

International Journal of Solids and Structures

Determination of the mechanical properties of metallic thin lms and substrates from indentation tests

Identification of model parameters from elastic/elasto-plastic spherical indentation

A Language for Task Orchestration and its Semantic Properties

Parametric identification of elastic-plastic constitutive laws using spherical indentation

Supplementary Information: Nanoscale heterogeneity promotes energy dissipation in bone

Research Article Representative Stress-Strain Curve by Spherical Indentation on Elastic-Plastic Materials

T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, )

Prediction of Elastic Constants on 3D Four-directional Braided

Fast Fourier Transform Solvers and Preconditioners for Quadratic Spline Collocation

ADVANCES IN MATHEMATICS(CHINA)

Mechanics of indentation of plastically graded materials I: Analysis

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Research Article Examining the Effect of Pileup on the Accuracy of Sharp Indentation Testing

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Framework for functional tree simulation applied to 'golden delicious' apple trees

Vectors. Teaching Learning Point. Ç, where OP. l m n

CONVEX OPTIMIZATION OVER POSITIVE POLYNOMIALS AND FILTER DESIGN. Y. Genin, Y. Hachez, Yu. Nesterov, P. Van Dooren

Planning for Reactive Behaviors in Hide and Seek

Applications of Discrete Mathematics to the Analysis of Algorithms

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR AGAINST A RIGID FLAT UNDER VARYING MODULUS OF ELASTICITY AND SPHERE RADIUS

Supplementary Figures

Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics

hal , version 1-27 Mar 2014

Optimal Control of PDEs

I118 Graphs and Automata

ETIKA V PROFESII PSYCHOLÓGA

Block vs. Stream cipher

Examination paper for TFY4240 Electromagnetic theory

ANALYSIS ON PSEUDO-STEADY INDENTATION CREEP

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

SME 3023 Applied Numerical Methods

A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius

An alternative design method for the double-layer combined die using autofrettage theory

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3)

STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS

Periodic monopoles and difference modules

Stochastic invariances and Lamperti transformations for Stochastic Processes

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Keysight Technologies Instrumented Indentation Testing with the Keysight Nano Indenter G200. Application Note

SKMM 3023 Applied Numerical Methods

Determination of Poisson s Ratio of Rock Material by Changing Axial Stress and Unloading Lateral Stress Test

Interests and limitations of nanoindentation for bulk multiphase material identification: Application to the β phase of Ti-5553

New method for solving nonlinear sum of ratios problem based on simplicial bisection

ETNA Kent State University

Scratching of Elastic/Plastic Materials With Hard Spherical Indenters

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013

Mechanics of Materials and Structures

TELEMATICS LINK LEADS

Copyright 2013 Tech Science Press MCB, vol.10, no.1, pp.27-42, 2013

4.3 Laplace Transform in Linear System Analysis

Constructive Decision Theory

Prediction of the bilinear stress-strain curve of engineering material by nanoindentation test

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Nanoindentation for Characterizing Wood & Related Systems

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

Concrete subjected to combined mechanical and thermal loading: New experimental insight and micromechanical modeling

An improved algorithm for scheduling two identical machines with batch delivery consideration

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Home Page. Title Page. Page 1 of c. Go Back. Full Screen. Close. Quit

Problem 1 (From the reservoir to the grid)

Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman

Finite Element Modeling of Nanoindentation on C S H: Effect of Pile up and Contact Friction E. Sarris 1 and G. Constantinides 1,2

Transcription:

47 3 Vol.47 No.3 211 Ê 3 321 326 ACTA METALLURGICA SINICA Mar. 211 pp.321 326 ±Á Æ ½ Å³Æ ¹ 1 Î 1 ÏÍ 1 1 Ì 2 Ë 1 1 ¾ Þº, ¾ 324 2 ¾ ³» Í Þº, ¾ 324 Æ ± Ó Ó ÆÏÞØ,  ¼ ± È Á ÅÛ ÖÝÛ, Ó Ó Ï ¼ ±. º Ì Ï, Á ÅÛ ÖÝÛ Ï È, Ç È ÏÐ Ç ¾, Ó Ó ÏÁ ; º ±Ï, ¼ ÏÞØÓ Ó ÏÁ ; ¾ Æ Ó Ó Ï ±, ÊÒÓ Ó Ï. Ü, ÞØ ÏÚ. ÏÐ, Û, Á, Á, ± Ê TG115.5 µ A Ç 412 1961(2113 321 6 EXTRACT THE PLASTIC PROPERTIES OF METALS US- ING REVERSE ANALYSIS OF NANOINDENTATION TEST MA Yong 1, YAO Xiaohong 1, TIAN Linhai 1, ZHANG Xiangyu 1, SHU Xuefeng 2, TANG Bin 1 1 Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 324 2 Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 324 Correspondent: TANG Bin, professor, Tel: (3516154, E-mail: tangbin645@sina.com Supported by High Technology Research and Development Program of China (No.27AA3Z521, National Natural Science Foundation of China (No.57717 and Shanxi Province Science and Technology Key Project (No.2132178 2 Manuscript received 21 11 3, in revised form 21 12 1 ABSTRACT Using traditional methods to evaluate mechanical properties of bulk materials is not applicable for metal surface studying and metals with very small volume. Nanoindentation testing at very low load is a new successful technique for study of mechanical properties on small scales or near surfaces. However, so far there is not a robust approach to determine plastic properties of metal materials using nanoindentation test. The aim of this paper is to present a method for determining the plastic properties, e.g. the true plastic stress true plastic strain relation of metals combining nanonindentation test and finite element simulation. This methodology contains three main parts. Firstly, considering the special case of metals without strain hardening, the representative stress σ r is determined by varying assumed representative stress over a wide range until the reverse and forward loading curves are consistent. Then, also by comparing the reverse and forward loading curves, the representative strain ε r is obtained, but with different values of strain hardening exponent n, which are in the range of.6. Secondly, a series of simulations are performed for 124 combinations of each parameter (E, σ y, n, ν expressing the elastic plastic behaviors of the universal engineering metals. From the computational results, a dimensionless function u is constructed, and then the strain hardening exponent is determined. At last, substituting the strain hardening exponent n into the power law constitution, the yield stress σ y of metals is acquired. The examination of 5 kinds of metals from the forward analysis metal materials indicates that the dimensionless function u has generality and the strain hardening exponent has stability and uniqueness. The accuracy of this method is also examined by comparing the elasto plastic properties of practical metal AISI 34 steel obtained from nanoindentation test and finite element simulation with the tensile test results. In order to make * ±Ë Ä ßÖÄÆ 27AA3Z521, ±ËÞÕÅ Ó 57717 ¼ß ÅÄ 2132178 2 Ü Ê : 21 11 3, Ê : 21 12 1 Ç Ð : º, Ã, 198 Ë, DOI: 1.3724/SP.J.137.21.583

322 Ñ 47 the reverse analysis results get higher precision, in the practical application of this technique, the test error of nanoindentation should be maximally reduced. KEY WORDS forward analysis, reverse analysis, representative stress, representative strain, strain hardening exponent ¹ÛÔ µ«æ Ü ÁÔ Æ Ø, ÌÙ Ð µ µðç. Ø Å,  «Ü ½ ÍÔ Á Ô µ ÐÇ. ½Â «ÜÅ ÍÔ µ H ÆÐ E [1,2], Ä Ë ÐÂ Ô µ ÐÐDz² ß. µ ÑÌ, Ô ÐÐDz² Æ Ö Â Ðµ  е (σ r, ε r Å [3 13]. É Í À¾ Tabor [14], Dao [3] Ð Þ²Ñ, ÈÔ µ ÆÐ E ½ (σ r, ε r, ÍËÍ É» Ä, µü ² Ô µ ÐРDz² 6 ĐÌ ²., Antunes [6] ݵ É, ² µæð, ¼ µ (σ r, ε r µ µ е «ÜÖ µ ² ¼. É, Ô µ µ ²½, Antunes [6] ² É µ, ²Ã Ì ² ÔÐ, Ä ÑÀ ² ²³, à ÏØ. µæ ÐÐÇ, ½ ÙР«Ü Þ É ( Ñ Í» Ä Å ³ ¹ È Ð. «Æ ½ Ñ ³  Š³, Ð ÞÜ, ÐÔÔ µµ ²½ ßÙ. Ñ ½ Ô µ ÆÐ E 55 6 GPa, σ y.1 1 GPa, µ ² n.6, Poisson ν.3. Ý AISI 34, ßÙ Û. 1 Â Å»Ë Ôо, ÕÁ ɽÞÁ É Û [15], ½ Ý ANSYS v.1.. ÞÕÁ, Ç. Berkovich «Ó Ù 7.3 «ÐÙ«, Ú Berkovich «Ä ². Ã Ú ½ÕÁ 8 Ô Ã, Ð«Ø Ã Þ², «½ ².16. 1 ÕÁÔо Ú, 484 à ½ 12318. Ð Æ Í x ß Ñ½ y ßÑ, Ð¾Ô Íо. Í ½ ½Ä 2 ÐßÆ, «Æ ½Ä Í ßÆ. ² ÍÐ Ñ É² ½ Í Ç Û, Ò Ý ² 4 [16]. É Ô µ ÐÐÇ ½ Ú, Von Mises ÚÂ, Ù 2 ¼. Ð Ð µ, Æ Ð Ëŵ µ (σ ε Ù : Eε (σ σ y σ = n (1 Rε n = σ y (1 + E σ y ε p (σ > σ y Æ, R ², n µ ², σ y 1 ÔÀÓ ½ ÙÏ Fig.1 Two dimensional finite element mesh 2 Å Û Ê Fig.2 The power law elasto plastic true stress true strain curve (E elastic modulus, R strengthen coefficient, σ r representative stress, ε r representative strain, n strain hardening exponent, σ y initial yield stress, ε y corresponding yield strain

3 ¾ ¹ :»À ÚÎÚ Đ Ò Ò ³ÎµßßÅ 323, ε p е, е 2 ε y (=σ y /E. 2 º à 2.1 À²Ä À ¾ ½ É, Antunes [6] ² µ H ½ ÆÐ E [1] r  е σ r Æ H =.231 ( Er σ r + 4.91 (2 Lee [7] ½ É, Í ÆР е  е Æ ( 166.7 ε r = exp 3.91 + /σ r + 177.3 (3 É Ñ ½ É Ô µ, Æ ÐРDz² : E=26.3 GPa, σ y =4.2 GPa, n=.38. Ñ Ö, ¾ Oliver Pharr Ù [1] Í Ô H=11.7 GPa. Ü ½ 2 Æ Ô µ  е ½  е, Ö µü É ÞĐ. ÅÜ ÉĐ : Ç Ú Þ É, Ö Ü Ñ ³ Î, Ð Ç Þ È Î Þ É, Ù Ñ, ËÜ Ñ ¼Í» Ä ËÈ.  е ½Â е, ² Ç,  е É ½ n= É ( 3. ÝµÜ ÉĐ, È σ r = 7.53 GPa, ÉÍ Ñ ³ Ͳ ¹ È, Ù 4 ¼. Ñ Ü «Ü F max (forward=13.77 mn, F max (reverse=13.727 mn, È ÐϺ.14%. Բ е, ½ < n.6( 3, à µ«ß ÜÆ Â Ðµ, ¼  е Ô. ÝµÜ ÉÐ, È ε r =.42, É» Ä Í µ ², Ͳ Ñ ³, Ù 5 ¼. Ü «Ü F max (reverse= 13.718 mn, Ñ ³ ÐϺÕ.8%. Ô е Ϻ Í, ½Ü ÉĐ Â Ðµ µ Û. 6 5 Ö Ð Ð., ÆР˲µ ², ÃÆÐ ¹Ûµ ² à ÓÃ. 2.2 À» É ¼ ¾ ½Ü Բ е ½Â е, ͵ ² n, Ö ½ÂÜÆ (1 Ã Í µô µ σ y, ÓÔ Ô Ð«ß. ÆÔ е ½Â е ßÙ, µü ÉĐ «Ü Ñ ¼ÍÖ È, ÔÔ µ µ ², Ä ¼Đ. ² Ê, Dao [3], «Æ ½ Ñ Á² µ ² Ì ² 12 1 8 6 4 2 Forward Reverse 2 4 6 8 1 12 14 16 18 4 ÏÐ Û»ÌÏÌ Ï º à 12 1 8 6 4 Fig.4 Loading curves from forward and reverse finite element simulations Forward Reverse (n=.15 Reverse (n=.25 Reverse (n=.35 Reverse (n=.45 Reverse (n=.55 2 3 ± n Ï Fig.3 Scheme of stress strain curves controlled by n (ε e elastic strain 2 4 6 8 1 12 14 16 18 5 ± ÏÐ Û»ÌÏ º à Fig.5 Load displacement curves from forward and reverse analysis with different values of n

324 Ñ 47 P u = P u (h, h max,, σ r, n = h 2 u ( hmax h, σ r, n (4 Æ, P u Ö», h «, h max «. È P u =, ÐÅÖ, ² h = h r (h r ³ «, ÆØ h r = ( σr u, n h max (5 ²ÉÆ (5 Æ, Ð, ½ 124 ĐÆ ÐÐDz² (E, σ y, n, ν Þ Ñ, Ö ÌÐ Ñ ³, ½ Ô е ßÙ Đ²²Ðµ  е. 7 Ð 124 Đ Ð Ç µ É Ðµ hr h max σr. Ç h r /h max,»²ô µ Óµ. ¼Å «ÌÒ µä Ï, «ÌÒ µä Ï, É Â «Ü Ü 2 Ð Æ. ½ MATLAB Рɲ Þ É, ÍÌ ² u ÆÙ : u( σ r, n = h r h max = (.25n 3 +.137n 2 + [.168n.48 ln( σ ] 3 r + (.253n 3 + [.14359n 2 +.1823n.882 2.5 2. 1.5 1..5 Forward Reverse (n=.15 Reverse (n=.25 Reverse (n=.35 Reverse (n=.45 Reverse (n=.55 ln( σ r ] 2+. 12 124 128 132 136 14 6 ± Õ ÏÐ Û ²Ï Fig.6 Amplificatory unloading segments from forward and reverse analysis with different values of n (.611n 2 +.3396n.65421ln( σ r + (.58211n 2.8854n.6729 (6 Æ (6 µ½ Ƽ Ô µ, Æ (1 Ü Ç ÉÔ µ µ ² n=.384, σ y =4.18 GPa, Ñ Ðµ ÐϺ 1.5% ½.48%. Ö, Ϻ ¾µ ² Ç ÏºÀ, Óµ ² Ç Ï º  е ½µ Û ÁÆ (6 ½Ð. ¾ Æ,  е ½µ Ϻ ¼Ò, ², µ ² Ç ÏºÖ ¾É ¼ÍÌ ² u ½Ð. ² u ½Ð Á¼ µ ², Ñ Ô µý Ĺ ± 124 Đ 5 ĐÔ µ ÞÜ, Ç ³ÁϺ٠1 ¼., Ü ³ Ñ Ô µ ÐÐDz² Ϻ Ò, 3% Ä, ² Ì ² u ½Ð, ¼ µ ² ÉÐ. ß, ßÙ Åɵ½ : ¾Â «ÜÙ ÍÔ µ ÆÐ ½, Ö µ Đ ÉÔ е ½Â е, ½Ì ²½Æ (1 ͵ ²½. Î µ È ²Ð «½Ì ² À Ϻ, ² ÏØ». 8 Ù ¹. h r /h max 1..9.8.7.6.5.4.3.2..2.4.6.8.1 r / n= n=.1 n=.2 n=.3 n=.4 n=.5 n=.6 7 Ë Å ± u ÏÓ Fig.7 Determination of dimensionless function u 1 5 ŠƱ± ¾Ó Û ²Ïι Table 1 Error distribution of reverse analysis results of 5 kinds of metals with known elasto plastic properties Matel Elesto plastic parameter Plastic parameter obtained from reverse analysis E, GPa σ y, GPa n σ r, GPa ε σ y, GPa Error of σ y, % n Error of n, % 1 418.95 6.76.282 9.655.446 6.58 2.66.286 1.41 2 34. 4.12.427 5.359.325 4.157.9.425.47 3 232.22.738.24 1.336.333.741.41.238.83 4 2.86.567.12.86.24.578 1.94.118 1.67 5 18.4.32.144.524.286.296 2..147 2.8

3 ¾ ¹ :»À ÚÎÚ Đ Ò Ò ³ÎµßßÅ 325 3 È ²µ½ÅÉÔ ßÙ ÛÔÐ, ÌÐ AISI 34 Þ² Đ½Â «Ü. Đ ½ ASTM Ú Đ, е ½ 1 3 s 1, ¼Í AISI 34 Æ ÐÐDz²Ù 2 ¼.  «Ü ½ Nano Indenter G2 Ú Â «Ç, «2 µm Ù Ç µ, ÁÜ ³ 2. 9 ½ 1» ² ½Ü ÉĐ Ô AISI 34  е ½Â е µ. Ü Ñ «Ü ÐϺ Ð.7% ½.1%. µð 2 ² Í, ½ É 8 ¼Á ÅÛ À Û Ó Ó Ï Æ±± Fig.8 Nanoindentation test and finite element simulation reverse analysis for the prediction of the plastic constitution 2 ¼ 2 ÞØÌÊÏ AISI 34 ÏŠƱ± Table 2 Elasto plastic property of AISI 34 steel obtained by two different methods 28 24 2 Experimental Reverse Parameter Tensile test Nanoindentation and Error, % reverse analysis E, GPa 25.6 211.512 2.88 H, GPa 3.4 σ r, GPa.725 ε r.235 σ y, GPa.236.239 1.27 n.37.364 1.62 16 12 8 4 4 8 12 16 2 9 Á ÅÛ Û»ÌÏ AISI 34 Ì Ï º à Fig.9 Loading curves of AISI 34 by nanoindentation test and reverse analysis

326 Ñ 47 3 25 2 15 1 5 Experimental Reverse (n= Reverse (n=.8 Reverse (n=.18 Reverse (n=.28 Reverse (n=.38 Reverse (n=.48 Reverse (n=.58 3 6 9 12 15 18 21 1 ± AISI 34 È»ÌÏ º à ¼»Ì Fig.1 Load displacement curves from reverse analysis and experimental results for AISI 34 with different values of n Р«Ü ÞÜ, ÛÔ ÔÔ µ Æ ÐÐDz². Æ, Ü µ Ϻ ¾ Ü ÉĐ ÁÌ ² u ÍËÆ, ², ½Â «Ü Ü ÅÉÔ µ ÐÐÇ ²²,  «Ü Û «Ü ¼ ÍÔ µ ÐÐDz² Û. 4 ½Â «Ü ² ÉÁ, ² ÐÔÔ µ ½µ ² Ü Ù. µ Đ ³Ð, ² ßÙ Û. ÌÐÌÙ ½ Þ Ô µ, ßÙ Ñ Å½Î. Ö Õ : µâ «Ü ÍÔ µ ÆÐ ÆÐ Á ; ½ ÞÜ Đ É, Ô Ô Â Ðµ ½Â е ; ½Ì ² Ô µ µ ²; ½ «ß Ô µ. «[1] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564 [2] Pharr G M. Mater Sci Eng, 1998; A253: 151 [3] Dao M, Chollacoop N, Van Vliet K J, Venkatesh T A, Sure S. Acta Mater, 21; 49: 3899 [4] Bucaille J L, Stauss S, Felder E, Michler J. Acta Mater, 23; 51: 1663 [5] Chollacoop N, Dao M, Suresh S. Acta Mater, 23; 51: 3713 [6] Antunes J M, Fernandes J V, Menezes L F, Chaparro B M. Acta Mater, 27; 55: 69 [7] Lee J, Lee C, Kim B. Mater Des, 29; 3: 3395 [8] Cao Y P, Lu J. Acta Mater, 24; 52: 423 [9] Lee J H, Kim T, Lee H. Int J Solids Struct, 21; 47: 647 [1] Chollacoop N, Ramamurty U. Scr Mater, 25; 53: 247 [11] Cao Y P, Qian X Q, Huber N. Mater Sci Eng, 27; A454 455: 1 [12] Kim J Y, Lee K W, Lee J S, Kwon D. Surf Coat Technol, 26; 21: 4278 [13] Branch N A, Subhash G, Arakere N K, Klecka M A. Acta Mater, 21; 58: 6487 [14] Tabor D. The Hardness of Metals. London: Oxford University Press, 1951: 12 [15] Choi Y, Lee H S, Kwon D. J Mater Res, 24; 19: 337 [16] Soare S, Bull S J, O Neil A G, Wright N, Horsfall A, Santos J M M dos. Surf Coat Technol, 24; 177 188: 497