WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B

Similar documents
PURE MATHEMATICS A-LEVEL PAPER 1

1985 AP Calculus BC: Section I

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

ln x = n e = 20 (nearest integer)

1973 AP Calculus BC: Section I

WBJEE Answer Keys by Aakash Institute, Kolkata Centre

H2 Mathematics Arithmetic & Geometric Series ( )

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

MATHEMATICS (B) 2 log (D) ( 1) = where z =

امتحانات الشهادة الثانوية العامة فرع: العلوم العامة

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

NET/JRF, GATE, IIT JAM, JEST, TIFR

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 20 th MAY, 2018)

+ x. x 2x. 12. dx. 24. dx + 1)

SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY 2 2


MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

National Quali cations

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

ASSERTION AND REASON

Probability & Statistics,

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter Taylor Theorem Revisited

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

3sin A 1 2sin B. 3π x is a solution. 1. If A and B are acute positive angles satisfying the equation 3sin A 2sin B 1 and 3sin 2A 2sin 2B 0, then A 2B

Assignment ( ) Class-XI. = iii. v. A B= A B '

Solution to 1223 The Evil Warden.

Calculus & analytic geometry

UNIT 2: MATHEMATICAL ENVIRONMENT

10. Joint Moments and Joint Characteristic Functions


Session : Plasmas in Equilibrium

MTH Assignment 1 : Real Numbers, Sequences

A Simple Proof that e is Irrational

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

Objective Mathematics

2) 3 π. EAMCET Maths Practice Questions Examples with hints and short cuts from few important chapters

Discrete Fourier Transform (DFT)

Digital Signal Processing, Fall 2006

Student s Printed Name:

ANSWERSHEET (TOPIC = ALGEBRA) COLLECTION #2

Objective Mathematics


VIVEKANANDA VIDYALAYA MATRIC HR SEC SCHOOL FIRST MODEL EXAM (A) 10th Standard Reg.No. : MATHEMATICS - MOD EXAM 1(A)

AIEEE 2004 (MATHEMATICS)

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

1973 AP Calculus AB: Section I

WBJEE MATHEMATICS

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

2008 AP Calculus BC Multiple Choice Exam

BRAIN TEASURES TRIGONOMETRICAL RATIOS BY ABHIJIT KUMAR JHA EXERCISE I. or tan &, lie between 0 &, then find the value of tan 2.

SEQUENCE AND SERIES NCERT

Mathematics Extension 2

Further Results on Pair Sum Graphs

Narayana IIT Academy

Poornima University, For any query, contact us at: ,18

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

Chapter 3 Fourier Series Representation of Periodic Signals

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

Mathematics Extension 2

MULTIPLE CHOICE QUESTIONS SUBJECT : MATHEMATICS Duration : Two Hours Maximum Marks : 100. [ Q. 1 to 60 carry one mark each ] A. 0 B. 1 C. 2 D.

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

Ordinary Differential Equations

Q.11 If S be the sum, P the product & R the sum of the reciprocals of a GP, find the value of

National Quali cations

Linear Algebra Existence of the determinant. Expansion according to a row.

Consortium of Medical Engineering and Dental Colleges of Karnataka (COMEDK) Undergraduate Entrance Test(UGET) Maths-2012

ENJOY MATHEMATICS WITH SUHAAG SIR

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

A Review of Complex Arithmetic

( ) ( ) ( ) 2011 HSC Mathematics Solutions ( 6) ( ) ( ) ( ) π π. αβ = = 2. α β αβ. Question 1. (iii) 1 1 β + (a) (4 sig. fig.

CDS 101: Lecture 5.1 Reachability and State Space Feedback

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Mathematics Extension 1

WBJEEM Answer Keys by Aakash Institute, Kolkata Centre MATHEMATICS

Objective Mathematics

MATHEMATICS Code No. 13 INSTRUCTIONS

Regn. No. North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: ,

Law of large numbers

RAJASTHAN P.E.T. MATHS 1997

IIT JEE MATHS MATRICES AND DETERMINANTS

Chapter (8) Estimation and Confedence Intervals Examples

NATIONAL SENIOR CERTIFICATE GRADE 12

5.1 The Nuclear Atom

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Washington State University

10. Limits involving infinity

1997 AP Calculus AB: Section I, Part A

Mathematics Extension 2 SOLUTIONS

Transcription:

WBJEEM - MATHEMATICS Q.No. μ β γ δ C A C B B A C C A B C A B B D B 5 A C A C 6 A A C C 7 B A B D 8 C B B C 9 A C A A C C A B B A C A B D A C D A A B C B A A 5 C A C B 6 A C D C 7 B A C A 8 A A A A 9 A C B B A D A A D A A C D A C A C B D D A A B A 5 B C C A 6 C B B A 7 A A A A 8 A C A C 9 B A D A C C C D B C C C C B A C B B D A B A A 5 C A B C 6 A C C D 7 D A A 8 A B A C 9 C C A B D C A D A D B C C A A A A D C A A A A 5 A B C D B C A C 7 A C A B 8 C D A B 9 B C D B 5 B C C C 5 A C D C 5 A D C C 5 A A C B 5 A A B A 55 C A C A 56 C A C B 57 D B B A 58 B A B A 59 C C A C 6 C D A D 6 D B C A 6 A A A C 6 D B A A 6 B C A C 65 B C D A 66 A D D C 67 A D C C 68 C D A D 69 A A A D 7 D A B A 7 C C B D 7 C A C A 7 A A D B 7 C A A B 75 A C C A 76 A,D A,B,D C,D A,B 77 A,B A,B A,B A,B 78 A,B C,D A,B,D A,D 79 C,D A,B A,D A,B,D 8 A,B,D A,D A,B C,D

WBJEEM - (Aswrs & Hits) Cod-μ CATEGORY - I Q. to Q.6 carry o mark ach, for which oly o optio is corrct. Ay wrog aswr will lad to dductio of / mark.. y Lt th quatio of a llips b 5, ad passig through th foci of th llips is 9 (B) 7 (C) (D) 5 Hits : a, b 5 P (, ), S(a, ) Radius PS, S ( 9, ) PS +. Th th radius of th circl with tr ( ). If y + is paralll to a tagt to th parabola y, th its distac from th ormal paralll to th giv li is 9 (B) 7 7 As : (B) Hits : m slop of li ; a y m am am (Norm l) (C) 7 y 6.. Distac 9 7. I a ΔABC, taa ad tab ar th roots of pq( + ) r. Th ΔABC is a right agld triagl (B) a acut agld triagl (C) a obtus agld triagl (D) a quilatral triagl Hits : pq r + pq taa tab so ta(a+b) is udfid C π/. Lt th umbr of lmts of th sts A ad B b p ad q rspctivly. Th th umbr of rlatios from th st A to th st B is p+q (B) pq (C) p + q (D) pq As : (B) Hits : p (B) q ; (A B) pq ANSWERS & HINTS for WBJEEM - SUB : MATHEMATICS (D) 7

WBJEEM - (Aswrs & Hits) 5. Th fuctio π ta π[ ] f(), whr [] dots th gratst itgr, is + [] cotiuous for all valus of (B) discotiuous at (C) ot diffrtiabl for som valus of (D) discotiuous at Hits : f() R 6. Lt z, z b two fid compl umbrs i th Argad pla ad z b a arbitrary poit satisfyig z z + z z z z. Th th locus of z will b a llips (B) a straight li joiig z ad z (C) a parabola (D) a bisctor of th li sgmt joiig z ad z Hits : Possibility of llips P(z), S (z ), S (z ) PS + PS a S S a So it is a llips + 7. Lt S C + C+ C +... + C. Th S quals + As : (B) + + Hits : P + + r+ (B) + + r Cr ; S r + C. r, r (C) S C. r π (D) 8. Out of 7 cosoats ad vowls, th umbr of words (ot cssarily maigful) that ca b mad, ach cosistig of cosoats ad vowls, is 8 (B) 5 (C) 5 (D) 5 Hits : 7 C C 5! 9. Th rmaidr obtaid wh! +! +! +... +! is dividd by is 9 (B) 8 (C) 7 (D) 6 Hits : divids!, 5! tc. Rmaidr + + 6 9

WBJEEM - (Aswrs & Hits) 8 65. Lt S dot th sum of th ifiit sris + + + + +.... Th!!! 5! S < 8 (B) S > (C) 8 < S < (D) S 8 Hits : th trm of, 8,,, 65,... ( ) r r.(r ) + r! 7 5. For vry ral umbr, lt f() + + + +...Th th quatio f() has!!!! o ral solutio (B) actly o ral solutio (C) actly two ral solutios (D) iifiit umbr of ral solutios As : (B) Hits : is a solutio r ( r ) r! r. Th cofficit of i th ifiit sris pasio of, for <, is ( )( ) /6 (B) 5/8 (C) /8 (D) 5/6 As : (B) Hits : Ep Cofficit 5/8 ( ) ( + +... ) + + +.... If α, β ar th roots of th quadratic quatio + p + q, th th valus of α + β ad α + α β + β ar rspctivly pq p ad p p q + q (B) p(q p ) ad (p q)(p + q) (C) pq ad p q (D) pq p ad (p q) (p q) As : (D) Hits : α + β + α β α + β (α+β) αβ (α + β) (α + β ) α β p + pq (p q) q. A fair si-facd di is rolld tims. Th probability that ach fac turs up twic is qual to! 6!6!6 (B) 6 6! (C) 6 6! (D) 66 As : ( C) Hits : C C... C. 6

WBJEEM - (Aswrs & Hits) 5. Lt f() b a diffrtiabl fuctio i [, 7]. If f() ad f () 5 for all i (, 7), th th maimum possibl valu of f() at 7 is 7 (B) 5 (C) 8 (D) θ 5 Hits : ta 5 5 θ 5 7 So f(7) + 5 8 6. Th valu of π π π ta + ta + cot is 5 5 5 cot 5 π Hits : Add, subtract cot 5 π (B) cot π 5 (C) cot π 5 (D) cot π 5 7. Lt b th st of all ral umbrs ad f : b giv by f() +. Th th st f ([, 6]) is 5 5,, (B) 5 5, As : (B) Hits : f () 6 > if >, < if < f() f(α) 6. So α± 5 (C), (D) 5 5, 5 [Not : f() is is ivrtibl ithr f r > or for < so th right aswr should b ithr, or 5, 8. Th ara of th rgio boudd by th curvs y ad y is / (B) / (C) / (D) Hits : ( ) 9. Th poit o th parabola y 6 which is arst to th li + y + 5 has coordiats (9, ) (B) (, 8) (C) (, 6) (D) ( 9, ) Hits : Normal at P(am, am) has slop m. a 6, m. Th quatio of th commo tagt with positiv slop to th parabola y 8 ad th hyprbola y is y 6 + (B) y 6 (C) y + (D) y Hits : y a, a

WBJEEM - (Aswrs & Hits) y m + a m ; m >, a.m m, m 6. Lt p,q b ral umbrs. If α is th root of +p +5q, β is a root of +9p +5q ad <α<β, th th quatio +6p +q has a root γ that always satisfis γ α/+β (B) β < γ (C) γ α/+β (D) α < γ < β As : (D) Hits : Lt, f() +6p +q f(α) α +6p α+q (α +p α+5q ) + (p α+5q ) + p α+5q > Agai, f(β) β +6p β+q (β +9p β+5q ) (p β+5q ) (p β + 5q ) < So, thr is o root γ such that, α<γ<β. Th valu of th sum ( C ) + ( C ) + ( C ) +...+ ( C ) is ( C ) (B) C (C) C + (D) C As : (D) Hits : (+) C + C + C + ---------+C, (+) C + C +C + ------+C So, cofficit of i [(+) (+) ] i.. (+) is ( C +C + -------+C ), which is C So, C C +C + C + -------+ C, ( C ) + ( C ) + ( C ) +---- +( C ) C C C. Ram is visitig a frid. Ram kows that his frid has childr ad of thm is a boy. Assumig that a child is qually likly to b a boy or a girl, th th probability that th othr child is a girl, is / (B) / (C) / (D) 7/ Hits : Evt that at last o of thm is a boy A, Evt that othr is girl B, So, probability rquird P(B/A) ( A) P( A) PB ( ) ( ) PB A, Now, total cass ar ( BG, BB GG) P A (As, B A {BG} ad A {BG,BB}) ( ) ( ) / cos π/ si π/ si. Lt b a itgr, A ( π/) cos( π/) ad Ι is th idtity matri of ordr. Th A Ι ad A Ι (B) A m Ι for ay positiv itgr m (C) A is ot ivrtibl (D) A m for a positiv itgr m Hits : A cos θ si θ siθ cos θ, A cosθ si θ si θ cos θ, So, hr, A cosπ si π si π cos π,, ad A Ι

WBJEEM - (Aswrs & Hits) 5. Lt Ι dot th idtity matri ad P b a matri obtaid by rarragig th colums of Ι. Th Thr ar si distict choics for P ad dt(p) (B) Thr ar si distict choics for P ad dt(p) ± (C) Thr ar mor tha o choics for P ad som of thm ar ot ivrtibl (D) Thr ar mor tha o choics for P ad P Ι i ach choic As : (B) Hits : Ι, diffrt colums ca b arragd i,! i.. 6 ways, I ach cas, if thr ar v umbr of itrchags of colums, dtrmiat rmais ad for odd umbr of itrchags, dtrmiat taks th gativ valu i..! 6. Th sum of th sris π si 7 is π si 8 +si π 6 +si π 5 (C) (B) π si 6 +si π +si π +si π 6 π si 6 +si π +si π +si π 6 +si π 7 (D) si π 8 +s π 6! Hits : π si 7,! π! π si5! π! π si + si + + + si 7 7 7 7 π si 6 +si π +si π +si π 6 6 π s 7 + si k π, whr k, so si k π k 6 7. Lt α,β b th roots of ad S α +β, for all itgrs. Th for vry itgr S +S S + (B) S S S (C) S S + (D) S +S S + Hits : α+β, S + S, (α +α )+ β +β ), α (α+) + β (β+), ow sic α α & β β α.α + β.β α + +β + S + 8. I a ΔABC, a,b,c ar th sid of th triagl opposi to th agls A,B,C rspctivly. Th th valu of a si(b C) + b si(c A) + c si(a B) is quqal to (B) (C) (D) 9. I th Argad pla, th distict roots of +z+z +z (z is a compl umbr) rprst vrtics of a squar (B) a quilatral triagl (C) a rhombus (D) a rctagl As : (B) Hits : +z+z +z, (+z) (+z ), z,, ω, ω, whr ω is a cub root of uity, so, distict roots ar : (,),,,,. Distac btw ach of thm is. So, thy form a quilatral triagl. Th umbr of digits i (giv log.) is 6 (B) (C) 9 (D) 9 Hits : log log. 9.6, so, 9 digits

WBJEEM - (Aswrs & Hits). If y cos, th it satisfis th diffrtial quatio ( ) c, whr c is qual to (B) (C) (D) As : (D) Hits : y cos y (cos ), cos, cos, +, (- ). Th itgratig factor of th diffrtial quatio (+ ) y + ta is ta (B) + (C) ta (D) log (+ ) Hits : + y ta, I.F + + + ta. Th solutio of th quatio log log 7 ( + 7 + ) is (B) 7 (C) 9 (D) 9 Hits : log log 7 ( + 7 + ), log 7 ( + 7 + ), + 7 + 7, 7 + 7 +79 +,, 9. If α,β ar th roots of a +b+c (a ) a d α + h, β + h ar th roots of p +q+r (p ) th th ratio of th squars of thir discrimiats is a :p (B) a:p (C) a :p (D) a:p D Hits : D a (α β), D P (α β) ; D a p [ Not : Corrct aswr is 5. Lt f() +5+. If w writ f() as f() a(+)( ) +b( )( )+c( )(+) for ral umbrs a,b,c th thr ar ifiit umbr of choics for a,b,c (B) oly o choic for a but ifiit umbr of choics for b ad c (C) actly o choic for ach of a,b,c (D) mor tha o but fiit umbr of choics for a,b,c a p for D Hits : f() (a+b+c) + ( a b) a+b c, a+b+c, a b 5, a+b c, a, b /, c 9 6. Lt f() + /. th th umbr of ral valus of for which th thr uqual trms f(), f(), f() ar i H.P. is (B) (C) (D) D ]

WBJEEM - (Aswrs & Hits) Hits : f() + + + 8 + f()f(), f(), f(), f(), f(), f() ar i H.P., So, f() f() + f(),,, at, trms ar qual so oly solutio is 7. Th fuctio f() +b+c, whr b ad c ral costats, dscribs o-to-o mappig (B) oto mappig (C) ot o-to-o but oto mappig (D) ithr o-to-o or oto mappig As : (D) Hits : Upward parabola f() has a miimum valu. So, it is ot oto, also symmtric about its ais which is a straight li paralll to Y-ais, so it is ot o-to-o 8. Suppos that th quatio f() +b+c has two distict ral roots α ad β. Th agl btw th tagt to α+β α+β th curv y f() at th poit,f ad th positiv dirctio of th -ais is (B) (C) 6 (D) 9 Hits : f() +b+c rprsts upward parabola which cuts -ais at α ad β. As th graph is symmtric, so, α+β α+β tagt at,f paralll to -ais. Hc, M α β N ( α+ β, f ( α+ β )) y ϕ y 9. Th solutio of th diffrtial quatio y + y is (whr c is a costat) ϕ y y y ϕ c (B) ϕ c (C) ϕ y c (D) ϕ c Hits : Lt, y ν, y ν ν + d ν d substitutig, v (ν + φν ν ( ) ) ν + φ ( ν ) ( ) νφ ν, dv, φν ( ) [Lt, φ(v ) z, φ (v )v dv dz], dz z, z / + k, z c, y φ c. Lt f() b a diffrtiabl fuctio ad f () 5. Th ( ) f( ) f lim (B) 5 (C) (D) As : (D) quals

WBJEEM - (Aswrs & Hits) Hits : lim ( ) f( ) f,( form, so usig L Hospital s rul), lim ( ) f, f () 5. Th valu of cos(t )dt lim is si (B) (C) (D) log Hits : cos lim si + cos cos lim si + cos +. Th rag of th fuctio y si, Hits : y si π 6 (B) [, ] π 6 is (C), (D) [, ) y ma si π/, y mi. Thr is a group of 65 prsos who lik ithr s gig or dacig or paitig. I this group lik sigig, lik dacig ad 55 lik paitig. If 6 prsos lik bot sigig ad dacig, lik both sigig ad paitig ad lik all thr activitis, th th umbr of prs s who lik oly dacig ad paitig is (B) (C) (D) Hits : (S P D) 65 (S) (D) (P) 55 (S D) 6 (S P) (S D P) (S P D) (S) + (D) + (P) (S D) (D P) (P S) + (S D P) 65 + + 55 6 (P D) + (P D) 85 65 (P D) (P D S). Th curv y (cos + y) / satisfis th diffrtial quatio (y ) + + cos (B) y + cos (C) (y ) + cos (D) (y ) + cos

WBJEEM - (Aswrs & Hits) Hits : y (cos + y) / y cos + y y si + +.y. cos +, (y ) + + cos 5. Suppos that z, z, z ar thr vrtics of a quilatral triagl i th Argad pla. Lt α ( + i ) ad β b a o-zro compl umbr. Th poits αz + β, αz + β, αz + β will b Th vrtics of a quilatral triagl (B) Th vrtics of a isoscls triagl (C) Colliar (D) Th vrtics of a scal triagl Hits : + + ( α z +β) ( α z +β) ( α z +β) ( α z +β) ( α z +β) ( α z +β) + + α(z z ) α(z z ) α(z z ) + + α (z z ) (z z ) (z z ) Hc, αz + β, αz + β, αz + β ar vrtics of quilat ral triagl. a si si 6. If lim ists ad is qual to, th th valu of a is ta (B) (C) (D) As : (B) Hits : 8 a( ) ( ) +.... lim +... a (a ) + +... lim +... a a +, 7. If f() th, > f() is 7/ (B) 5/ (C) / (D) 7/ Hits : f() + f() ( + ) + ( ) + + 5/ + 7/

WBJEEM - (Aswrs & Hits) 8. Th valu of z + z + z i is miimum wh z quals i (B) 5 + i (C) Hits : z + z + z i + y + ( ) + y + + (y ) + y 6 y + i + (D) i [ + y.y. ] + i z + + 9. Th umbr of solutio(s) of th quatio + is/ar (B) (C) (D) As : (B) Hits : + Squarig, + + + 5 5/ Which dos ot satisfis th quat o. Hc, o solutio 5. Th valus of λ for which th curv (7 + 5) + (7y + ) λ ( + y ) rprsts a parabola is ± 6 5 As : (B) (B) ± 7 5 Hits : 9 [( + 5/7) + (y + /7) ] 5λ + y 5 (C) ± 5 (D) ± 5 5λ 9 λ 9 5 λ ±7/5

WBJEEM - (Aswrs & Hits) 5. If si + cosc π, th th valu of is 5 (B) (C) (D) Hits : si π cosc sc cos 5 si si 5 5. Th straight lis + y, 5 + y ad + 5y form a isoscls triagl (B) a quilatral triagl (C) a scal tri gl (D) a right agld triagl Hits : Thir poit of itrsctio ar (, ) (, ) ad (/, /) which is th vrtics of isocls triagl. 5. If I ( α ), th α lis i th itrval (, ) (B) (, ) (C) (, ) (D) (, ) Hits : I ( α ) > ( α) should b somwhr positiv ad somwhr gativ so α (, ) Hc, a (, ) 5. If th cofficit of 8 i a + b is qual to th cofficit of 8 i a b, th a ad b will satisfy th rlatio ab + (B) ab (C) a b (D) a + b Hits : a + b Co-fficit of 8 i a + b

WBJEEM - (Aswrs & Hits) C 6 a 7. 6 b () Co-fficit 8 i a b C 7 a 6 7 b C 7 a 6. 7 b () Sic, C 6 a 7 /b 6 C 7 a 6 /b 7 a b ab + 55. Th fuctio f() a si + b is diffrtiabl at wh a + b (B) a b (C) a + b (D) a b Hits : f() a si + b f() a si + b a si + b < f () acos + b acos b < at a + b a b a + b 56. If a, b ad c ar positiv umbrs i a G.P., th th roots of th quadratic quatio (log a) (log b) + (log c) ar log c log c ad log a (B) ad log a Hits : b ac log a log b + log c ( ) ( ) log a log b + log c Sic, satisfis th quatio Thrfor is o root ad othr root say β (C) ad log a c (D) ad log c a.β log c log a log a c β log c log a log c a

WBJEEM - (Aswrs & Hits) si, 57. Lt R b th st of all ral umbrs ad f: [, ] R b dfid by f(), Th, f satisfis th coditios of Roll s thorm o [, ] (B) f satisfis th coditios of Lagrag s Ma Valu Thorm o [, ] (C) f satisfis th coditios of Roll s thorm o [, ] (D) f satisfis th coditios of Lagrag s Ma Valu Thorm o [, ] As : (D) Hits : f() is odiffrtiabl at 58. Lt z b a fid poit o th circl of radius ctrd at th origi i th Argad pla ad z ±. Cosidr a quilatral triagl iscribd i th circl with z, z, z as th vrtics tak i th coutr clockwis dirctio. Th z z z is qual to z (B) z (C) z (D) z As : (B) π Hits : Lt z r iα, z r i( α+ ), z r z z z r π α+α+ +α+ r i(α + π) r iα (r iα ) π i( ) π i( α+ ) z 59. Suppos that f() is a diffrtiabl fuctio s ch tha f () is cotiuous, f () ad f () dos ot ist. Lt g() f (). Th g () dos ot ist (B) g () (C) g () (D) g () Hits : g().f () g( + h) g() g () lim h h (+ h) f( + h) f() g () lim h h g () + lim f ( + h) h f () z z z

WBJEEM - (Aswrs & Hits) 6. Lt [] dot th gratst itgr lss tha or qual to for ay ral umbr. Th lim is qual to (B) (C) (D) Hits : lim < + < + lim lim < CATEGORY - II Q.6 to Q.75 carry two marks ach, for which oly o optio is corrct. Ay wrog aswr will lad to dductio of / mark 6. W dfi a biary rlatio ~ o th st of all ral mat ics as A ~ B if ad oly if thr ist ivrtibl matrics P ad Q such that B PAQ. Th biary rlatio ~ is Nithr rfliv or symmtric (B) Rfliv ad symmtric but ot trasitiv (C) Symmtric ad trasitiv but ot rfl iv (D) A quivalc rlatio As : (D) Hits : For Rfliv, A.I IA, A IAI so rfliv. For Symmtric, B PAQ, BQ PA, P BQ A or A (P ) B. (Q ),so symmtric. For Trasitiv, B PAQ, C PBQ P.PAQ.Q (PP)A(QQ), so trasitiv 6. Th miimum valu of si + co is / (B) / + (C) (D) si cos + si + cos Hits :, si cos +., si cos + 6. For ay two ral umbrs θ ad ϕ, w dfi θrϕ if ad oly if sc θ ta ϕ. Th rlatio R is Rfliv but ot trasitiv (B) Symmtric but ot rfliv (C) Both rfliv ad symmtric but ot trasitiv (D) A quivalc rlatio As : (D) Hits: For rfliv, θ φ so sc θ ta θ, Hc Rfliv For symmtric, sc θ ta φ so, ( + ta θ) (sc φ ) so, sc φ ta θ. Hc symmtric For Trasitiv, lt sc θ ta φ ad sc φ ta γ so, + ta φ ta γ or, sc θ ta γ. Hc Trasitiv

WBJEEM - (Aswrs & Hits) 6. A particl startig from a poit A ad movig with a positiv costat acclratio alog a straight li rachs aothr poit B i tim T. Suppos that th iitial vlocity of th particl is u > ad P is th midpoit of th li AB. If th vlocity of th particl at poit P is v ad if th vlocity at tim T is v, th v v (B) v > v (C) v < v (D) v v As : (B) t tt/ tt A (v ) P(v ) B (u>) Hits : Sic th particl is movig with a positiv costat acclratio hc it s vlocity should icras. So th tim tak to travl AP is mor that th timtak for PB. So th istat T is bfor P. Hc v > v sic vlocity icrass from A to B. 65. Lt t dot th th trm of th ifiit sris 9...! +! +! +! + 5! +. Th lim t is (B) (C) (D) As : (B) Hits : t + 6 6, + 6 6 lim sic domiator is vry larg compard to umrator 66. Lt α, β dot th cub roots of uity othr tha ad α β. Lt s ( ) α β. Th th valu of s is Eithr ω or ω (B) Eithr ω or ω (C) Eithr ω or ω (D) Eithr ω or ω Hits : a ω, β ω α ω β ω ω + ω ω + ω...+ ω, S ( ).( ω) ( ) ( ) α ω α ω, β ω ω, S (ω β ω ) (ω ) +(ω )...+(ω ) ω ω ω ( ) ( ω) ω ω ω 67. Th quatio of hyprbola whos coordiats of th foci ar (±8, ) ad th lgth of latus rctum is uits, is y 8 (B) y 8 (C) y 8 (D) y 8 b Hits : a 8, a, y a a + b or, 6 a + a so a, b 8, so y 8 6 8 68. Applyig Lagrag s Ma Valu Thorm for a suitabl fuctio f() i [, h], w hav f(h) f() + hf (θh), < θ <. Th for f() cos, th valu of lim h + θ is (B) (C) (D)

WBJEEM - (Aswrs & Hits) Hits : For f() cos, cos h + h ( si(θh)), cosh siθ h, h cosh si h θ h cosh h si si h lim θ lim lim h h + + + h h h 69. Lt X {z + iy : z } for all itgrs. Th is X A siglto st (B) Not a fiit st (C) A mpty st (D) A fiit st with mor tha o lmts Hits : X ( z ) (,) X ( z ), X ( z ), Th rquird rgios ar shadd for,, so clarly will b oly th poit circl origi. So a siglto st π/cos 7. Suppos M N, + π+ As : (D) (B) π/ ( + ) X si cos. Th th valu of (M N) quals π π π π si cos N si Hits : + ( ) + ( + ) + π cos cost Rplacig t, dt M ( + ) ( t+. So M N ) π+ π (C) π π + cos π+ + ( ) (D) π+ 7. π π 6π cos + cos + cos 7 7 7 is qual to zro (B) lis btw ad (C) is a gativ umbr (D) lis btw ad 6 As : (c)

WBJEEM - (Aswrs & Hits) π si π π 6π Hits : cos cos cos 7 π + + cos 7 7 7 si π 7 7. Clarly it is a gativ o. 7. A studt aswrs a multipl choic qustio with 5 altrativs, of which actly o is corrct. Th probability that h kows th corrct aswr is p, < p <. If h dos ot kow th corrct aswr, h radomly ticks o aswr. Giv that h has aswrd th qustio corrctly, th probability that h did ot tick th aswr radomly, is p p + (B) 5p p + (C) 5p p + As : (c) Hits : K H kows th aswrs, NK H radomly ticks th aswrs, C H is corrct C PK ( ) P K K P C C C PK ( ) P + PNK ( ) P K NK P P + ( P) 5 5P P+ (D) p p + 7. A pokr had cosists of 5 cards draw at radom from a wll-shuffld pack of 5 cards. Th th probability that a pokr had cosists of a pair ad a tripl of qual fac valus (for ampl svs ad kigs or acs ad qus, tc.) is 6 65 Hits : (B) 5 C5 65 C C C C 6. 65 (C) 797 65 (D) 65 7. Lt f( ) ma{ +, [ ]}, whr [] d ts th gratst itgr. Th th valu of ( ) (B) 5/ (C) / (D) As : (c) Hits : Rquird ara + 75. Th solutio of th diffrtial quatio K f is - - - y + udr th coditio y wh is log NK C y y log + (B) y log + (C) y log log + (D) y log log log + Hits : Itgratig factor y ( log ) + log log log ( log ) log y log + c + c,c

WBJEEM - (Aswrs & Hits) CATEGORY - III Q. 76 Q. 8 carry two marks ach, for which o or mor tha o optios may b corrct. Markig of corrct optios will lad to a maimum mark of two o pro rata basis. Thr will b o gativ markig for ths qustios. Howvr, ay markig of wrog optio will lad to award of zro mark agaist th rspctiv qustio irrspctiv of th umbr of corrct optios markd. 76. Lt f( ) t dt, >, Th, f() is cotiuous at (B) f() is ot cotiuous at (C) f() is diffrtiabl at (D) f() is ot diffrtiabl at As : (A,D) Hits : t dt ( t) dt + ( t ) dt +, f( ) f ( ) Clarly f() is cotiuous but ot diffrtiabl at. +, >, >,, 77. Th agl of itrsctio btw th curvs y si + cos ad + y, whr [] dots th gratst itgr, is ta (B) ta ( ) (C) ta (D) ta ( ) / As : (A,B) Hits : si + cos + si So, s + cos. y si + cos. (,) y y, So, agl is ithr ta ( ) or ta (). (,) y 78. If u() ad v() ar two idp dt solutios of th diffrtial quatio b cy, + th additioal solutio(s) of th giv diffrtial qua io is (ar) y 5 u() + 8 v() (B) y c {u() v()} + c v(), c ad c ar arbitrary costats (C) y c u() v() + c u()/v(), c ad c ar arbitrary costats (D) y u() v() As : (A,B) Hits : Ay liar combiatio of u() ad v() will also b a solutio. 79. For two vts A ad B, lt P.7 ad P(B).6. Th cssarily fals statmts(s) is/ar P( A B).5 (B) P( A B).5 (C) P( A B).65 (D) ( ) As : (C,D) P A B.8 Hits : P( A B) P( A B) ow PA ( ) PA ( B),.7. P( A B), ( ). P A B.6

WBJEEM - (Aswrs & Hits) 8. If th circl + y + g + fy + c cuts th thr circls + y 5, + y 8 6y + ad + y + y at th trmitis of thir diamtrs, th C 5 (B) fg 7/5 (C) g + f c + (D) f g As : (A,B,D) Hits : Commo chords of th circl will pass through th ctrs. c 5, 8g + 6f 5, g f 7 so, g,f 5