PHYS4210 Electromagnetic Theory Spring Final Exam Wednesday, 6 May 2009

Similar documents
Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00

PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

E&M. 1 Capacitors. January 2009

PH2200 Practice Final Exam Summer 2003

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01

Physics 218 Practice Final Exam

Electromagnetic Theory I

Electricity & Magnetism Qualifier

Physics 8.02 Exam Two Equation Sheet Spring 2004

Final Exam - PHYS 611 Electromagnetic Theory. Mendes, Spring 2013, April

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism

A cylinder in a magnetic field (Jackson)

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

E & M Qualifier. January 11, To insure that the your work is graded correctly you MUST:

Indiana University Physics P331: Theory of Electromagnetism Review Problems #3

Chap. 1 Fundamental Concepts

Exam in TFY4240 Electromagnetic Theory Wednesday Dec 9, :00 13:00

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

Columbia University Department of Physics QUALIFYING EXAMINATION

Classical Mechanics/Electricity and Magnetism. Preliminary Exam. August 20, :00-15:00 in P-121

A half submerged metal sphere (UIC comprehensive

Homework # Physics 2 for Students of Mechanical Engineering. Part A

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions

PHYS 1444 Section 004 Lecture #22

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor:

CHAPTER 9 ELECTROMAGNETIC WAVES

2nd Year Electromagnetism 2012:.Exam Practice

MUDRA PHYSICAL SCIENCES

Chapter 33: ELECTROMAGNETIC WAVES 559

VU Mobile Powered by S NO Group All Rights Reserved S NO Group 2012

Columbia University Department of Physics QUALIFYING EXAMINATION

J10M.1 - Rod on a Rail (M93M.2)

2. Waves with higher frequencies travel faster than waves with lower frequencies (True/False)

Preliminary Examination: Electricity and Magnetism Department of Physics and Astronomy University of New Mexico. Fall 2004

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

General Physics (PHYC 252) Exam 4

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives

Department of Physics Preliminary Exam January 2 5, 2013

Name (Please Print)...

AP Physics C. Gauss s Law. Free Response Problems


PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015.

1. (3) Write Gauss Law in differential form. Explain the physical meaning.

BLUE-PRINT II XII Physics

Columbia University Department of Physics QUALIFYING EXAMINATION

ELECTRO MAGNETIC FIELDS

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.


Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1

Phy207 Exam I (Form1) Professor Zuo Fall Semester Signature: Name:

APRIL 2015 EXAMINATION version A PHY 132H1S Duration - 2 hours

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I. FRIDAY, May 5, :00 12:00

Electromagnetic waves in free space

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system).

Chapter 11. Radiation. How accelerating charges and changing currents produce electromagnetic waves, how they radiate.

Physics 322 Midterm 2

Where k = 1. The electric field produced by a point charge is given by

Louisiana State University Physics 2102, Exam 3, November 11, 2010.

PHYS 1444 Section 003 Lecture #23

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

PHYS 110B - HW #5 Fall 2005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased

Ph.D. QUALIFYING EXAMINATION PART A. Tuesday, January 3, 2012, 1:00 5:00 P.M.

UNIT I ELECTROSTATIC FIELDS

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I. WEDNESDAY, January 3, :00 12:00

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Good Luck! Mlanie LaRoche-Boisvert - Electromagnetism Electromagnetism and Optics - Winter PH. Electromagnetism and Optics - Winter PH

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

Electromagnetic Theory (Hecht Ch. 3)

free space (vacuum) permittivity [ F/m]

xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ.

Chapter 1 - The Nature of Light

Basics of Electromagnetics Maxwell s Equations (Part - I)

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

CHAPTER 8 CONSERVATION LAWS

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Electrodynamics Qualifier Examination

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1

EUF. Joint Entrance Examination for Postgraduate Courses in Physics

NIU Ph.D. Candidacy Examination Fall 2017 (8/22/2017) Electricity and Magnetism

Physics 217 Practice Final Exam

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions

Exam 2--PHYS 202--Spring 2011

A) I B) II C) III D) IV E) V

Chapter 30 Sources of the magnetic field

Physics (

Exam 4 (Final) Solutions

AP Physics C Mechanics Objectives

Please fill in your Student ID number (UIN): IMPORTANT. Read these directions carefully:

Physics 1308 Exam 2 Summer 2015

(Total 1 mark) IB Questionbank Physics 1

Transcription:

Name: PHYS4210 Electromagnetic Theory Spring 2009 Final Exam Wednesday, 6 May 2009 This exam has two parts. Part I has 20 multiple choice questions, worth two points each. Part II consists of six relatively short problems, worth ten points each. The short problems can be worked on on the front page of the sheet provided, but use the back if you need more room. In any case please be neat! You may use your textbook, course notes, or any other reference you may have other than another human. You are welcome to use your calculator or computer, although the test is designed so that these are not necessary. Good luck! Part I (Total): Part II Problem 1: Problem 2: Problem 3: Problem 4: Problem 5: Problem 6: Total:

Part I: Multiple Choice Questions (Two points each) 1. The electric field is evaluated at a certain point far from a localized charge distribution whose net charge is zero. At a point twice as far away, but in the same direction, the electric field is A. multiplied by 2. B. multiplied by 1/2. C. multiplied by 1/4. D. multiplied by 1/8. E. the same, since it must equal zero everywhere. 2. An infinitely large plane is charged by an amount σ per unit area. The electric field magnitude at a distance r from the plane is A. 0 B. σ C. 2πσ D. 4πσ E. σ/r 2 3. An electric field E(r, t) and a magnetic field B(r, t) are derived from the vector and scalar potentials A(r, t) and φ(r, t). If I add the vector atî to A(r, t) (where a is a constant and î is the unit vector in the x-direction), then what must I subtract from φ(r, t) in order to keep E(r, t) and B(r, t) unchanged? A. a B. at C. ax/c D. axt/c E. nothing. 4. Which of the following is equivalent to Coulomb s Law? A. E = 4πρ B. B = 0 C. E = (1/c) B/ t D. B = (1/c) E/ t + 4πj E. F = qe + (q/c)v B

5. Given a vector function F(x, y, z) = xî + zĵ + yˆk, and a box of side length a sitting with one corner at (x, y, z) = (0, 0, 0) and in the octant where x, y, and z, are all positive, the value of F da box that is, the surface integral over the box, is A. 0 B. a 2 C. a 3 D. 6a 2 E. 3a 3 6. Five positive charges of magnitude q are arranged symmetrically around the circumference of a circle of radius r. What is the magnitude of the electric potential at the center of the circle? A. 0 B. q/r C. 5q/r D. q/r cos(2π/5) E. 5q/r cos(2π/5) 7. Which of the following statements is false? A. The electric field E is a polar vector in three-dimensional space. B. The magnetic field B is an axial vector in three-dimensional space. C. The inner product E B of electric and magnetic fields is invariant under both spatial rotations and Lorentz transformations. D. The electric field E and magnetic field B specify the elements of a four-dimensional tensor in space and time. E. The electric field E is the same to all observers, but the magnetic field B depends on the particular reference frame. 8. A wave component moving in the z-direction is written as the complex function E(z, t) = E 0 e i(kz ωt) Which of the is the time-averaged value of the physical electric field? A. 0 B. E 0 /2 C. E 0 / 2 D. E 0 E. E 2 0

9. As shown in class, the electric field from a static charge distribution ρ(r) is E(r) = all space ρ(r )(r r ) r r 3 dv This implies that which of the following is true for a point charge Q = ρ(r)dv? A. I only B. II only C. III only D. I and II only E. I, II, and III I. E = 4πρ II. E = 0 III. E = Q/ r 2 10. A transverse, traveling electromagnetic plane wave with wavelength λ and (angular) frequency ω moves through a medium with (real) index of refraction n. Which of the following equals the speed of light c? A. λω B. λω/2π C. nλω D. nλω/2π E. λω/2πn 11. An oscillating magnetic dipole emits electromagnetic radiation. If r represents the distance from the source, then the electric field at large distances falls like A. 1/ r B. 1/r C. 1/r 3/2 D. 1/r 2 E. 1/r 3 12. Two simultaneous events are separated in space by a distance L. In a different reference frame, moving at a speed v relative to the first, they are separated by t in time and x in space. Writing β v/c and γ = 1/ 1 β 2, it is true that A. L 2 = ( x) 2 B. L 2 = (γ x) 2 C. L 2 = (c t) 2 D. L 2 = (cγ t) 2 E. L 2 = ( x) 2 (c t) 2

13. A plane wave is incident on a plane boundary between two dielectric media, with different indices of refraction. It is normally incident, that is, it moves perpendicularly to the plane boundary. Which of the following has the same value on either side of the boundary and very close to it? A. I only B. III only C. I and III only D. II and IV only E. I, II, III, and IV I. The electric field parallel to the interface II. The electric field perpendicular to the interface III. The magnetic field parallel to the interface IV. The magnetic field perpendicular to the interface 14. Which of the following modes cannot be supported in a rectangular waveguide? A. TE 10 B. TE 11 C. TE 12 D. TM 10 E. TM 11 15. A reasonable approximation for the index of refraction of glass is given by n = 1 + 4πe2 N m(ω0 2 ω 2 ) where e and m are the electron charge and mass, and N is the electron density. If ω corresponds to the angular frequency of visible light, then ω 0 would be given by the angular frequency of electromagnetic radiation A. in the microwave region. B. in the infrared region. C. in the green region. D. in the ultraviolet region. E. in the X-ray region. 16. Two clean, uncharged parallel conducting plates are held close to each other in a vacuum. They feel a force between them due to A. rearrangement of atomic charges. B. residual magnetic fields. C. quantum mechanics. D. thermodynamics. E. nuclear forces.

17. A current I flows around a square loop with side length a. The magnetic dipole has magnitude A. Ia 2 /2 B. Ia 2 C. 2Ia 2 D. 2πIa 2 E. 4πIa 2 18. A quantity Z is represented by a density η(r, t) and flows according to a velocity field w(r, t). The mathematical statement that is equivalent to stating that η t + (ηw) = 0 A. Z = 0 B. Z is constant. C. Z is conserved. D. Z is independent of time. E. Z is independent of space. 19. Three charges are arranged in a line. Two have charge +q and are separated by a distance d. The third has charge 2q and is equidistant between the first two. This arrangement has nonzero A. total charge. B. charge density. C. dipole moment. D. quadrupole moment. E. dipole moment and quadrupole moment. 20. Napolitano is the last name of A. the Secretary of Homeland Security. B. the President of the Italian Republic. C. the professor in charge of this course. D. all of the above. E. none of the above.

Part II: Short Problems (10 points each) Problem 1. Show that, for spherical coordinate radius r, a function of the form f(r) = 1 r e i(kr ωt) satisfies the wave equation so long as v = ω/k is the speed of the wave.

Problem 2. A straight wire with circular cross section and radius R carries a nonuniform current density J(r), where r is the distance from the axis of the wire. For J(r) = 3I 0 r/4πr 3, find the magnetic field B(r) both inside (r < R) and outside (r > R) the wire.

Problem 3. Prove that if, in some reference frame, E is nonzero but B = 0, then there is no reference frame in which E = 0. (Hint: Make use of a homework assignment.)

Problem 4. A spherical dielectric shell of inner radius a and outer radius b is uniformly charged and carries a net charge Q. Find the electric potential as a function of the radius r, for r < a, a < r < b, and r > b. You may leave the answer in terms of the charge density ρ, but be sure to somewhere derive ρ in terms of Q, a, and b.

Problem 5. A coaxial cable is a waveguide made from two long coaxial conducting cylinders. A TEM wave propagates with speed c along the cable (the z-direction) with E(r, z, t) = ˆrE(r)e i(kz ωt) and B(r, z, t) = ˆθB(r)e i(kz ωt) using cylindrical coordinates r, θ, and z. Derive expressions for E(r) and B(r) and show that they are consistent with Maxwell s Equations.

Problem 6. A circular wire loop of radius R carries a current that oscillates sinusoidally in time with an (angular) frequency ω. If the amplitude of oscillation is I 0, find the (time averaged) power radiated per unit solid angle. Measure the solid angle relative to an axis perpendicular to the plane of the current loop. You may refer to results derived in your textbook, but clearly cite any equations that you use.