Finite Element Analysis of Graphite/Epoxy Composite Pressure Vessel

Similar documents
TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

DYNAMIC FAILURE ANALYSIS OF LAMINATED COMPOSITE PLATES

Practice Final Examination. Please initial the statement below to show that you have read it

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Capability Assessment of Finite Element Software in Predicting the Last Ply Failure of Composite Laminates

FLEXURAL RESPONSE OF FIBER RENFORCED PLASTIC DECKS USING HIGHER-ORDER SHEAR DEFORMABLE PLATE THEORY

Chapter 2 - Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2.

Composites Design and Analysis. Stress Strain Relationship

Analysis of Composite Pressure Vessels

Advanced Structural Analysis EGF Cylinders Under Pressure

Lift Truck Load Stress in Concrete Floors

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL

Bending Analysis of Symmetrically Laminated Plates

Analytical Strip Method for Thin Isotropic Cylindrical Shells

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

Vibration Behaviour of Laminated Composite Flat Panel Under Hygrothermal Environment

Lecture 8. Stress Strain in Multi-dimension

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Effect of Thermal Stresses on the Failure Criteria of Fiber Composites

FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS

University of Sheffield The development of finite elements for 3D structural analysis in fire

Chapter 3. Load and Stress Analysis

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Bending of Simply Supported Isotropic and Composite Laminate Plates

The stiffness of plates

Passive Damping Characteristics of Carbon Epoxy Composite Plates

Static Analysis of Cylindrical Shells

Semi-Membrane and Effective Length Theory of Hybrid Anisotropic Materials

Computational Analysis for Composites

ON THE NUMERICAL ANALYSIS OF COMPOSITE MATERIAL

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING

The Effects of Convolution Geometry and Boundary Condition on the Failure of Bellows

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

Enhancing Prediction Accuracy In Sift Theory

Optimum Height of Plate Stiffener under Pressure Effect

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

Finite-Element Analysis of Stress Concentration in ASTM D 638 Tension Specimens

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

QUESTION BANK Composite Materials

Stability of Simply Supported Square Plate with Concentric Cutout

N = Shear stress / Shear strain

Parametric Study Of The Material On Mechanical Behavior Of Pressure Vessel

Finite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix)

2012 MECHANICS OF SOLIDS

Applications of Pure Membrane, Pseudo Membrane, and Semi Membrane Shell Theories of Hybrid Anisotropic Materials

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk

FREE VIBRATION ANALYSIS OF LAMINATED COMPOSITE SHALLOW SHELLS

Lecture 15 Strain and stress in beams

PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

Presented By: EAS 6939 Aerospace Structural Composites

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA

COMPUTER AIDED DESIGN IN CASE OF THE LAMINATED COMPOSITE MATERIALS

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

Strength Prediction Of Composite Laminate

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems

Free Vibration Response of a Multilayer Smart Hybrid Composite Plate with Embedded SMA Wires

Parametric study on the transverse and longitudinal moments of trough type folded plate roofs using ANSYS

Hygrothermal stresses in laminates

GATE SOLUTIONS E N G I N E E R I N G

EXPLICIT DYNAMIC SIMULATION OF DROP-WEIGHT LOW VELOCITY IMPACT ON CARBON FIBROUS COMPOSITE PANELS

Getting Started with Composites Modeling and Analysis

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

PRESSURE VESSELS & PRESSURE CABINS FOR BLENDED WING BODIES

Stress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina

PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS

Mechanical analysis of timber connection using 3D finite element model

FEA A Guide to Good Practice. What to expect when you re expecting FEA A guide to good practice

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS

Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces

Numerical Analysis of Composite Panels in the Post-Buckling Field taking into account Progressive Failure

Stress and fatigue analyses of a PWR reactor core barrel components

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

Energy Conservation and Gravitational Wavelength Effect of the Gravitational Propagation Delay Analysis

EXPERIMENTAL AND FINITE ELEMENT MODAL ANALYSIS OF VARIABLE STIFFNESS COMPOSITE LAMINATED PLATES

PROMAL2012 SOFTWARE PACKAGE A USER GUIDE

Tensile behaviour of anti-symmetric CFRP composite

DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD

Laminated Composite Plates and Shells

Passive Damping Characteristics of Carbon Epoxy Composite Plates

Transcription:

Journal of Materials Science and Chemical Engineering, 2017, 5, 19-28 http://www.scirp.org/journal/msce ISSN Online: 2327-6053 ISSN Print: 2327-6045 Finite Element Analysis of Graphite/Epoxy Composite Pressure Vessel Meng-Kao Yeh, Tai-Hung Liu Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan How to cite this paper: Yeh, M.-K. and Liu, T.-H. (2017) Finite Element Analysis of Graphite/Epoxy Composite Pressure Vessel. Journal of Materials Science and Chemical Engineering, 5, 19-28. https://doi.org/10.4236/msce.2017.57003 Received: April 13, 2017 Accepted: July 4, 2017 Published: July 7, 2017 Abstract Shell structure is widely used in industrial applications, such as in machinery, aerospace, ship and building fields, as well as containers of pressurized chemicals or liquefied natural gas. Graphite/epoxy composites has advantages of light weight, high strength, corrosion resistance, low expansion, low shrin age and are often used in the form of composite pressure vessel for various engineering applications. In this study, the stress distributions of composite pressure vessel were analyzed. The finite element code ANSYS was used in analysis, in which the eight-node element SHELL 281 was adopted. The internal pressure 20 MPa, as in container of compressed natural gas, was applied inside the symmetrical cross-ply graphite/epoxy composite pressure vessel. The finite element model was established with suitable mesh size and boundary conditions. The stress distributions are discussed for the composite pressure vessel, especially for the inner two layers at the junction of semis pherical part. The Tsai-Hill criterion was used to assess the failure of composite pressure vessel. Keywords Finite Element Analysis, Stress Analysis, Composite Pressure Vessel, Tsai-Hill Failure Criterion 1. Introduction Composite pressure vessels provide substantial weight reduction, high impact strength, zero corrosion and longer fatigue life, when compared with common metal ones. The composite pressure vessels can be used to carry compressed natural gas (CNG). CNG, mainly composed of methane (CH 4 ), is compressed to 20 MPa in high pressure cylinders operated at minus 40 to 60 degrees Celsius [1] [2]. After decompression, CNG is supplied for combustion to achieve power as a high quality alternative fuel for automobiles. CNG has the advantages of good DOI: 10.4236/msce.2017.57003 July 7, 2017

anti-blast performance, less emissions of harmful substances, extended service life and reduced fuel costs. Yen [3] mentioned that discontinuous stress and bending stress occurred at the junction of semispherical part of pressure vessel. Yue and Li [1] used high-density polyethylene (HDPE) as the liner of composite pressure vessel to cover the cylinder up to the junction of end plate to avoid failure. In this study, the composite pressure vessel is analyzed using finite element method. The symmetrical cross-ply composite pressure vessel model with different boundary conditions is analyzed and its stress distribution and failure behavior assessed by Tsai-Hill criterion are discussed for the composite pressure vessel. 2. Composite Shell Analysis 2.1. First-Order Shear Deformation Theory (FSDT) The composite pressure vessel is assumed to be an intermediately thic shell structure, with thicness/cylindrical radius greater than 0.18. The first-order shear deformation theory (FSDT) proposed by Mindlin [4] assumed a constant transverse shear deformation through the intermediately thic shell. The element type 8 node Shell 281 [5] [6] used in finite element analysis is based on FSDT in this study. As shown in Figure 1, the coordinate system α-β is at the middle surface of shell, and the z-axis is in the thicness direction of shell. Assuming no normal strain, ε z = 0, the normal of shell eeps straight during deformation, but not perpendicular to the middle surface. The displacement field can be expressed as u z = u0 + z α ( αβ,, ) ( αβ, ) ψ ( αβ, ) v( αβ,, z) = v ( αβ, ) + zψ β ( αβ, ) (1) 0 w( αβ,, z) = w ( αβ, ) 0 where u 0, v 0, w 0 represent the displacement at middle surface of shell. ψ α and ψ β are the mid-surface rotations. The stress and strain relationship of -th layer of composite laminate is shown below [7]. Figure 1. Shell s α-β-z coordinate system. 20

Q Q 0 0 Q σ 11 12 16 α ε α Q12 Q22 0 0 Q σβ 26 εβ σ βz = 0 0 Q44 Q45 0 γβz σ αz 0 0 Q45 Q55 0 γ αz σ αβ γ Q16 Q26 0 0 Q αβ 66 The coefficient of stiffness matrix ( Q ) is obtained after transforming the stiffness matrix from the material principal axis to α-β axis, as shown in Equation (3) [7], in which c and s represent cosθ and sinθ respectively. ij ( ) Q = Qc + 2 Q + 2Q cs + Q s 4 2 2 4 11 11 12 66 22 ( ) 2 2 4 4 Q = Q + Q 4 Q cs + Q ( c + s) 12 11 22 66 12 Q = cs Q + c sq cs( c s )( Q + 2 Q ) 3 3 2 2 16 22 11 12 66 ( ) Q = Qs + 2 Q + 2Q cs + Q c 4 2 2 4 22 11 12 66 22 ( ) 3 3 2 2 26 11 22 12 66 (2) Q = cs Q c sq cs c s ( Q + 2 Q ) (3) Q = Q c + Q s 2 2 44 44 55 ( ) Q = Q Q cs 45 55 44 Q = Q c + Q s 2 2 55 55 44 ( ) 2 Q = ( Q + Q 2 Q ) cs + Q c s 2 2 2 2 66 11 22 12 66 The coefficients of stiffness matrix ( Q ) are expressed below [7]. ij 1 23 32 21 31 23 12 32 13 1 31 13 Q11 E υυ 11, Q12 E υ + υυ 11 E υ + υυ = = = 22, Q22 = E υυ 22, Q = G, Q = G, Q = G, = 1 υυ υυ υυ 2υυυ (4) 44 23 55 13 66 12 12 21 23 32 31 13 21 32 13 where E 11 and E 22 are the Young. s modulus of composites in three directions; G 12, G 23 and G 13 are the shear modulus; υ 12, υ 23 and υ 13 are the Poisson s ratio of composites. 2.2. Tsai-Hill Failure Criterion In this study, the composite pressure vessel is under the operating internal pressure 20 MPa. The Tsai-Hill failure criterion was used through the thicness of the pressure vessel to determine whether the pressure vessel fails or not. The Tsai-Hill failure criterion is expressed as [8] σ σσ σ τ + + (5) S S S S 2 2 2 1 1 2 2 12 1 2 2 2 2 L L T LT where σ 1 is the stress in the fiber direction, σ 2 the transverse stress and τ 12 the shear stress. S L and S T are the tensile strengths in the fiber and transverse directions and S LT the shear strength for the composite lamina. When Equation (5) is true, it represents the possible failure at some layer in the composite pressure vessel. In the latter section, the value of left hand side of Equation (5) is termed as Tsai-Hill criterion value, which indicates failure of composite pressure vessel 21

when this value is greater than 1. 3. Finite Element Analysis 3.1. The Composite Pressure Vessel The composite pressure vessel has overall length 808 mm with a central cylinder part 592.5 mm, as shown in Figure 2. The outside diameter of central composite section is 215.5 mm. The opening diameter of end plate is 40 mm. The thicness of composite pressure vessel is 18 mm, which is formed by a total of 144 graphite/epoxy composite layers; each layer has a thicness of 0.125 mm. The laminate stacing of composite pressure vessel is symmetrical cross-ply, [(0/90) s ] 36, counting from inside wall as layer 1 with fiber in the hoop direction. In Figure 3, the schematic of selected inner and outer layers is shown. 3.2. Material Properties The material properties of graphite/epoxy composites are given below in Table 1 and Table 2 [9] [10]. The graphite/epoxy composite lamina is assumed to be specially orthotropic υ 12 = υ 13 =υ 23, E 22 = E 33, G 23 = E 22 /2(1 + υ 23 ) [8], since υ 13, υ 23, E 33 are difficult to be measured. The longitudinal and transverse strengths of graphite/epoxy composite lamina are adopted from [10] and the shear strength is from [9]. 3.3. Internal Pressure Load and Boundary Conditions The operating internal pressure of composite pressure vessel is 20 MPa with compressed natural gas (CH 4 ) at minus 40 to 60 degrees Celsius [1] [2]. Two types of boundary conditions, clamped by bucles as the first type and free ex- Figure 2. Dimensions of composite pressure vessel. Figure 3. Schematic of selected layers. 22

Table 1. Young s modulus, Poission ratio and shear modulus of graphite/epoxycomposites [9]. E11 E22 E33 υ12 υ13 υ23 G12 G13 G23 128.484 9.135 9.135 0.249 0.249 0.249 5.705 5.705 3.66 Table 2. Strength of graphite/epoxy composites. SL (MPa) ST (MPa) SLT (MPa) 2266 [10] 70 [10] 84.108 [9] pansion as the second type, are prescribed at the junction of semispherical part in analysis, as shown in Figure 4. The two end plates are placed at both ends to restrict all axial degrees of freedom (DOFs). 3.4. Analysis Model of Composite Pressure Vessel The commercial finite element code ANSYS [5] was used in analysis. The composite pressure vessel is meshed using 8-node element, Shell 281 [5] [6]. The stress at a selected point at the junction of semispherical part was calculated with different element numbers. Figure 5 shows the analysis model and convergence analysis of composite pressure vessel. The difference of simulated results at selected point is less than 1% for the analysis model of composite pressure vessel with 22,400 elements and 67,456 nodes. This analysis model is used for the rest of this study. 4. Results and Discussion The stress distribution of composite pressure vessel was analyzed. The value of Tsai-Hill criterion was calculated to evaluate the failure of composite pressure vessel under operating internal pressure 20 MPa [1] [2] with two types of boundary conditions. For the first type boundary condition, all DOFs at two junctions of semispherical parts are all prescribed to be zero and prescribed to be free for the second type boundary condition. Due to the symmetry of pressure vessel, the stresses are the same in the hoop direction. Figure 6 shows the designated curve to calculate the stresses and the values of Tsai-Hill criterion for discussion. 4.1. Results of Stress Distribution Since the layer 1 directly contacts with the internal pressure loading, the stresses in the fiber and transverse directions for layer 1 and 2, relatively large when compared with the stresses in other layers, are of primary concern and are discussed in the following sections. Figure 7 and Figure 8 show the von Mises stress distributions of layer 1 and layer 2 of composite pressure vessel with first type and second type boundary conditions. The von Mises stress values are in the range of 80-100 MPa. In the cylindrical part, the stress is very high in layer 1, 163-180 MPa, and very small in layer 2.4.5-24.1 MPa in the cylindrical part 23

Figure 4. Boundary condition of composite pressure vessel. Figure 5. Analysis model and convergence analysis of composite pressure vessel. Analysis model; Convergence analysis. Figure 6. The designated curve to calculate stresses and values of Tsai-Hillcriterion. Figure 7. Von Mises stress distributions of composite pressure vessel under first type boundary condition. Layer 1; Layer 2. for both boundary conditions. At the junction of semispherical part, von Mises stress is 106.34 MPa for layer 1 and 98.408 MPa for layer 2 under first type 24

boundary condition; von Mises stress is 84.64 MPa for layer 1 and 92.531 MPa for layer 2 under second type boundary condition. The stresses in the fiber and transverse directions of composite lamina are obtained by transforming the stress components from finite element analysis in the α-β coordinate system. First the discussion for the stresses in composite pressure vessel is simply based on the maximum stress criterion. The shear stresses obtained are very small and negligible when compared with the shear strength of graphite/epoxy composites. The stresses in the fiber and transverse directions for layer 1 and layer 2 along the designated curve for first type boundary condition are shown in Figure 9. In Figure 9, the stress of layer 1 in the fiber direction σ 1 at the junction is 108.23 MPa, much lower than the corresponding material strength 2200 MPa; the stress in the transverse direction σ 2 is 3.89 MPa, lower than the corresponding material strength 70 MPa. Therefore no failure occurs in layer1 for the composite pressure vessel under first type boundary condition. However, in Figure 9, the stress of layer 2 in the fiber directionσ 1 at the junction is 4.87 MPa, much lower than the corresponding material strength 2200 MPa and the stress in the transverse direction σ 2 is 100.75 MPa, larger than the corresponding material strength 70 MPa. Therefore failure may occur in layer2 for the composite pressure vessel under first type boundary condition. Figure 8. Von Mises stress distribution of composite pressure vessel under second type boundary condition. Layer 1; Layer 2. Figure 9. The stress along the designated curve for first type boundary condition. Layer 1; Layer 2. 25

The stresses in the fiber and transverse directions for layer 1 and 2 along the designated curve for second type boundary condition are shown in Figure 10. In Figure 10, the stress of layer 1 in the fiber directionσ 1 at the junction is 55.915 MPa and maximum 70.692 MPa, much lower than the corresponding material strength 2200 MPa; the stress in the transverse direction σ 2 is 94.934 MPa, larger than the corresponding material strength 70 MPa. Therefore failure may occur in layer1 for the composite pressure vessel under second type boundary condition. In Figure 10, the stress of layer 2 in the fiber directionσ 1 at the junction is 95.99 MPa and maximum 127.51 MPa, much lower than the corresponding material strength 2200 MPa and the stress in the transverse direction σ 2 is 6.44 MPa, also lower than the corresponding material strength 70 MPa. Therefore no failure occurs in layer 2 for the composite pressure vessel under second type boundary condition. 4.2. Results of Tsai-Hill Failure Criterion The results from the previous section show that the stress in the transverse direction is the main reason for failure of composite pressure vessel since the stress is greater than its corresponding strength 70 MPa, based on the maximum stress criterion. The Tsai-Hill criterion, Equation (5), is also used to assess the failure of composite pressure vessel for both types of boundary conditions. Figure 11 shows the Tsai-Hill criterion value of layer 1 and 2 along the designated curve from junction. From Figure 11, the Tsai-Hill criterion value of layer 2 is 2.07, greater than 1; this indicates the failure of layer 2 in composite pressure vessel under first type boundary condition. On the contrary from Figure 11, the Tsai-Hill criterion value of layer 1 is 1.84, greater than 1; this indicates the failure of layer 1 in composite pressure vessel under second type boundary condition. 5. Conclusion In this study, the stress distributions of symmetrical cross-ply graphite/epoxy composite pressure vessel under internal pressure 20 MPa were analyzed using finite element method. Two types of boundary conditions were considered in Figure 10. The stress along the designated curve forsecond type boundary condition. Layer 1; Layer 2. 26

Figure 11. Tsai-Hill criterion value along the designated curve. First type boundary condition; Second type boundary condition. analysis. The Tsai-Hill criterion was used to assess the failure of composite pressure vessel. The stress distribution and Tsai-Hill failure criterion are discussed for the inner two layers of composite pressure vessel at the junction of semispherical part. It can be concluded that layer 2 failure occurred for the composite pressure vessel studied under first type boundary condition; while layer 1 failed for the composite pressure vessel under second type boundary condition. Acnowledgements The authors would lie to than the support from Ministry of Science and Technology, Taiwan through the grant MOST 105-2221-E-007-031-MY3. The support is greatly acnowledged. References [1] Yue, Z.Z. and Li, X. (2012) Numerical Simulation of All-Composite Compressed Natural Gas (CNG) Cylinders for Vehicle. Procedia Engineering, 37, 31-36. https://doi.org/10.1016/j.proeng.2012.04.197 [2] Nirbhay, M., Juneja, S., Dixit, A., Misra, R.K. and Sharma, S. (2015) Finite Element Analysis of All Composite CNG Cylinders. Procedia Materials Science, 10, 507-512. https://doi.org/10.1016/j.mspro.2015.06.093 [3] Yen, H.Y. (2013) Structural Analysis and Evaluation of Pressure Vessel Supports. Master s Thesis, National Cheng Kung University, Tainan. [4] Mindlin, R.D. (1951) Influence of Rotatory Inertia and Shear Deformation on Flexural Motion of Isotropic, Elastic Plates. Journal of Applied Mechanics, 18, 31-38. [5] ANSYS Release 12.1 (2009) ANSYS, Inc., PA. [6] ANSYS User s Manual, ANSYS Inc. [7] Qatu, M.S. (2004) Vibration of Laminated Shells and Plates. 1st Edition, Elsevier Ltd., Amsterdam. [8] Gibson, R.F. (2007) Principles of Composite Material Mechanics.2nd Edition, CRC Press Ltd., U.S. [9] Liu, T.H. and Yeh, M.K.(2016) Finite Element Analysis of Quasi-Isotropic Carbon/Epoxy Composite Hemispherical Shell. The 40th National Conference on 27

Theoretical and Applied Mechanics, Hsinchu, 25-26 November 2014, Article ID: No. 1168. [10] AD Group-P (2016). High Performance Structural Application. Advanced International Multitech Co., Ltd. Submit or recommend next manuscript to SCIRP and we will provide best service for you: Accepting pre-submission inquiries through Email, Faceboo, LinedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals) Providing 24-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research wor Submit your manuscript at: http://papersubmission.scirp.org/ Or contact msce@scirp.org 28