Chapter 6 Cycloadditions and Rearrangements 1. Diels-Alder Reactions 2. [2 + 2] Cycloadditions 3. 1,3-Dipolar Additions 4. Cheletropic Reactions 5.

Similar documents
Pericyclic Reactions 6 Lectures Year 3 Handout 2 Michaelmas 2017

Advanced Organic Chemistry

Pericyclic Reactions

Diels-Alder Reaction

Selective Oxidations SUBSTRATE REAGENT. Non-activated Carbon Atoms. Bugs, enzymes. X 2 / hv. X 2 / hv or ArICl 2

[3,3]-sigmatropic Processes. [2,3]-sigmatropic Processes. Ene Reactions. Generalized Sigmatropic Processes X,Y=C, N, O, S X,Y=C, N, O, S

Chem 634. Pericyclic Reactions. Reading: CS-B Chapter 6 Grossman Chapter 4

Electrophilic Carbenes

Pericyclic reactions

Pericyclic Reactions (McM chapt 30)

Pericyclic reactions

Pericyclic Reactions - Continued

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Suggested solutions for Chapter 34

Answers To Chapter 4 Problems.

Organocopper Reagents

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them)

Lecture Notes Chem 51B S. King I. Conjugation

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

JOC Year-in-Review, 1984

Organic Photochemistry and Pericyclic Reactions

Answers To Chapter 7 Problems.

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

[3,3]-Sigmatropic rearrangements

17.1 Classes of Dienes

CuI CuI eage lic R tal ome rgan gbr ommon

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

17.1 Classes of Dienes

and Ultraviolet Spectroscopy

VINBLASTINE. H MeO 2 C MeO. OAc. CO 2 Me. Me H

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Asymmetric Catalysis by Lewis Acids and Amines

Additions to Metal-Alkene and -Alkyne Complexes

Highlights of Schmidt Reaction in the Last Ten Years

Chiral Brønsted Acid Catalysis

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

PERICYCLIC REACTIONS NOTES

Guideline 5: Tactical Bonds

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

Only five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those five.

CHEM 330. Final Exam December 11, 2007 A N S W E R S. This a closed-notes, closed-book exam. The use of molecular models is allowed

CYCLOADDITIONS IN ORGANIC SYNTHESIS

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy

DAMIETTA UNIVERSITY CHEM-405: PERICYCLIC REACTIONS LECTURE

Suggested solutions for Chapter 27

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Dienes and Ultraviolet Spectroscopy

Renaud Group Exercise Set

Molecular Rearrangements

Answers To Chapter 4 In-Chapter Problems.

UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 READ ALL THE INSTRUCTIONS CAREFULLY

Name: CHEM 633: Advanced Organic Chemistry: Physical Final Exam. Please answer the following questions clearly and concisely.

CHEM 330. Final Exam December 8, 2010 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

THE DIELS-ALDER REACTION

Tips for taking exams in 852

Ethers. Chapter 14: Ethers, Epoxides, & Sulfides. General Formula: Types: a) Symmetrical: Examples: b) Unsymmetrical: Examples: Physical Properties:

Chapter 14: Conjugated Dienes

Some Answers to Hour Examination #1, Chemistry 302/302A, 2004

Diels-Alder Cycloaddition

CHEM 330. Final Exam December 11, This a closed-notes, closed-book exam. The use of molecular models is allowed. This exam contains 12 pages

4. Organic photosynthetic reactions

Exam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Organic Chemistry CHM 224

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Chapter 5 Three and Four-Membered Ring Systems

ORGANIC - BRUICE 8E CH.8 - DELOCALIZED ELECTRONS AND THEIR EFFECT

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

6.8 The HOMO and LUMO Concept of Electronic Transitions The Selection Rules for Electronic Transitions Physical Properties of

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Strained Molecules in Organic Synthesis

CHEMISTRY Topic #3: Addition Reactions of Conjugated Dienes Spring 2017 Dr. Susan Findlay

OC IV: Organic Photochemistry Exercise 1 Exercise class Page 1 of 11. Exercise 1: Fundamentals, H-Abstraction reactions

Chapter 13 Conjugated Unsaturated Systems

Carbonyl Ylide Cycloadditions

Pericyclic Reactions page 29

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

Diels Alder cycloaddition

Dienes & Polyenes: An overview and two key reactions (Ch )

CYCLOBUTADIENE IN ORGANIC SYNTHESIS

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

ORGANIC - BROWN 8E CH DIENES, CONJUGATED SYSTEMS, AND PERICYCLIC REACTIONS

Stereoselective reactions of enolates

(c) S. orbital is (a) 1 (b) 0 (c) +1 (d) undefined.

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

The Woodward-Hoffmann Rules and the Conservation of Orbital Symmetry

Organocatalysis Enabled by N-Heterocyclic Carbenes

Suggested solutions for Chapter 32

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras

Three Type Of Carbene Complexes

Chapter 27 Pericyclic Reactions

11/5/ Conjugated Dienes. Conjugated Dienes. Conjugated Dienes. Heats of Hydrogenation

Chapter 15 Dienes, Resonance, and Aromaticity

Midterm #2 PRINTED LAST NAME 2 /20 3 /16 4 /9 5 /8 7 /24

Conjugated Systems & Pericyclic Reactions

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

(please print and circle your last name) CHEMISTRY 332 FINAL EXAM. December 11, 2006

Total Syntheses of Nominine

Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems

Transcription:

Chapter 6 Cycloadditions and earrangements 1. Diels-Alder eactions 2. [2 2] Cycloadditions 3. 1,3-Dipolar Additions 4. Cheletropic eactions 5. Sigmatropic earrangements 1

Diels Alder eactions s-cis 6e-intermediate 4π 2π 2π 4σ 1. eversible reactions: enthalpy decrease and entropy decrease 2. Concerted reactions: stereospecific FM interactions diene C C C C dienophile C C M ϕ 4 ϕ 3 ϕ 2 ϕ 1 LUM M LUM M ϕ 2 ϕ 1 supra LUM supra 2

Diels Alder eactions Dienes for Diels Alder eactions eactivity toward maleic anhydride: Me > > > > > Cl 1,348 12 5 2.2 1 0.1 s-trans not substrate s-trans not substrate 3

Diels Alder eactions Alkenes (Dienophiles) for Diels Alder eactions eactivity toward cyclopentadiene: S C Cl > > C 3 > Me = 6,700 155 4 1 1 C C C C C C > > > C C C C 4

Diels Alder eactions Alkenes (Dienophiles) for Diels Alder eactions eactivity toward cyclopentadiene: S C Cl > > C 3 > Me = 6,700 155 4 1 1 C C C C > > > C C C C C C eactive dienophiles Increased reactivity by electron-withdrawing group, and by releasing ring strains after Diels-Alder reactions 5

Diels Alder eactions egioselectivity: ortho and para C C ortho C C not meta C C C 2 Me para C 2 Me not meta C 2 Me 6

Diels Alder eactions Stereoselectivity: endo vs. exo 25 o C 100 o C endo exo kinetic thermodynamic Y Y Y Y electronic effect (secondary interactions) less steric effect 7

Diels Alder eactions Pyrones: Forward and etro Processes Me 2 C Diels-Alder rx. Me Me Me 2 C Me Me C 2 Me Me Me 2 C etro-diels-alder rx. 8

Diels Alder eactions egio- and Stereoselectivity Bn Me 110 o C syn Me Bn Me C endo selectivity 9

Diels Alder eactions Lewis Acid Catalysis: Enhanced Selectivity C 3, 120 o C, 25 o C, SnCl 4 para 71% 93% meta 29% 7% C 2 C 2 endo 0 o C, no catalyst 84 : 0 o C, AlCl 3 93 : exo 16 7 C 2 10

Diels Alder eactions Lewis Acid Catalysis B(Ac) 3 Me Me Me π-π stacking determines conformation B(Ac) 3 Me B chelation determines regioselectivity Me endo (97% de) 11

Diels Alder eactions Lewis Acid Catalysis -15 o C Cl Ti Cl 0 o C endo 90% (92%ee) exo 10% 12

Diels Alder eactions Acetylene Equivalents Cl Cl Cl Cl Cl Cl S 100 o C Cl Cl Cl Cl Cl Cl S Cl Cl Cl Cl Cl Cl S 2 S 2 S 2 S 2 a/g Me 13

Diels Alder eactions Danishefsky Diene Me Me 2 C Me C 2 Me C 2 Me Me 3 Si C 2 Me 3 Si Me 3 Si Me Me 2 C Me 3 Si Me C 2 Me C 2 Me 14

Diels Alder eactions Danishefsky Diene TMS t Bu ()-Eu(hfc) 3, 10 o C C 3 F 7 Eu 3 TMS t Bu TFA 58% ee hfc = 3-(heptafluoropropylhydroxymethylene)-()-camphorato 15

Diels Alder eactions etero Alkenes and Dienes TMS Me C 2 Me Me I 25 o C TMS I a Me Me 2 Me Me Me Bn Bn 250 o C, 10 h 13% 25 o C, 3 h, AlCl 3 63% Stepwise or concerted process? TBS TBS 92% TBS 16

Diels Alder eactions rtho Quinodimethane Equivalents Br Br Zn-Ag 74% heat 17

Diels Alder eactions Inter- vs. Intramolecular eactions Intermolecular reaction Me 2 C Me 2 C cis C 2 Me endo-selectivity Intramolecular reaction Me 2 C 180 o C C 2 Me trans C 2 Me E cis trans C 2 Me steric effect cis 18

Diels Alder eactions Intramolecular eactions Me 2 C 180 o C C 2 Me trans C 2 Me trans C 2 Me cis Me 2 C C 2 Me 150 o C trans 19

Vollhardt Annulation and Intramolecular Diel-Alder eaction 3 C C CpCo(C) 2 SiMe 3 CpCo(C) 2 Me 3 Si SiMe 3 Me 3 Si Me 3 Si Me 3 Si Me 3 Si Me 3 Si 20

[2 2] Cycloadditions: Thermal Process Ketenes [2 2] C C =, Me C C [2 2] = = Me 21

[2 2] Cycloadditions: Thermal Process Ketene and Analogs [2 2] C C 2 5 C C 2 5 [4 2] not observed C 2 5 Et Cl Et 3 Et C Et 22

Diels Alder eactions Ketene Equivalents Me Me Cl C 2 Me, 2 Me Cl C Me 25 o C TiCl 3, 4 Ac Me 2 Me Ar S Me S Ar Ac 2 Me SAr Ac Me 23

[2 2] Cycloadditions: Thermal Process Ketene Equivalents CF 3 S 3 (CF 3 S 2 ) 2 40 o C C keteniminium salt 2 88% yield 98% ee 24

otochemical eactions 1. Jablonksy diagram: absorption of light with suitable wavelength E = hν = 28600 (kcal/mol) λ (nm) 400-nm light is equivalent to 71.5 kcal/mol 2. Mercury vapor lamp (medium pressure): applied in immersion well 313 nm (50%), 365 nm (100%), 405 nm (42%), 436 nm (78%) Multilamp reactor (ayonet): 250 nm, 300 nm, 360 nm. 3. Light transimission of glasses: Quartz: 240 nm (90%), < 200 nm (50%) Pyrex: 360 nm (90%), 300 nm (50%), 290 nm (20%) 4. Cutoff filter solutions: < 250 nm (a 2 W 4 ); < 305 nm (SnCl 2 in Cl); < 450 nm (CoS 4 CuS 4 ) 25

[2 2] Cycloadditions: otochemical Process Enone: [2 2] Cycloaddition δ δ * hν δ δ ground state excited state head-to-tail head-to-head 72 : 28 hν 3 P=C 2 77% 77% 98% Isocomene 26

[2 2] Cycloadditions: otochemical Process C=C C= Bonds: Paterno-Büchi eaction Z-alkene hν [2 2] cis oxetane E-alkene hν [2 2] trans oxetane C 2 C 2 hν 63% The [2 2] cycloaddition occurs in a regioselective manner. 27

eactions of Metal Carbene Metathesis: Grubb Catalyst ucl 2 (P 3 ) 3 C 2 (c-c 6 11 ) 3 P Cl Cl PCy 3 u PCy 3 cat. u C u C u C 24 u 'C ' 25 25 MP: ring opening metathesis polymerization 28

eactions of Metal Carbene Metathesis: ing Closing Bn F 3 C Me C i Pr Mo Me 2 i Pr Bn Bn cat. Bn (Mo C) Bn Mo C 2 C Mo C 2 C Mo Mo 2 C C 2 Mo C 29

1,3-Dipolar Cycloadditions 1,3-Dipoles Propargyl Allenyl Type Allyl Type itrile xides C C Diazoalkanes C C Azides itrones zone C C 30

1,3-Dipolar Cycloadditions 1,3-Dipole Alkene (Dipolarophile) C C 2π 2n 2π 4σ 2n Concerted cycloaddition: Predictable stereochemistry 1,3-dipole M supra supra dipolarophile LUM 31

1,3-Dipolar Cycloadditions Stereochemistry Z C cis C E trans Me 2 C C 2 Me Me 2 C Me C 2 Me 2 C C 2 Me endo exo 32

1,3-Dipolar Cycloadditions egiochemistry: Less Predictable C C Y C C C C Y Y 33

1,3-Dipolar Cycloadditions Azides 20 o C 100% Triazoline 150 o C - 2 Aziridine Click Chemistry ' cat. CuC 2 Triazole ' 34

1,3-Dipolar Cycloadditions Diazoalkanes Cyclopropanation Et 2 2 C 0 o C 2 C Pyrazoline 20 o C 2 C C 2 Et C 2 Et [] C 2 Et Pyrazole 35

1,3-Dipolar Cycloadditions itrile xides C 2 X a 2 C 2 2 Ar C ( 2 ) C C 2 C acl [] C C Cl Et 3 Et 2, 20 o C C 36

1,3-Dipolar Cycloadditions itrile xides i Bu 2 Al 2 C 2 C CC 3 2, aney i i Pr 2 Li ( = ) C 37

1,3-Dipolar Cycloadditions itrile xides: Intramolecular Cycloaddition I C 2 Et Ag 2 Et 2 ; 90% C 2 Et p-clc 6 4 C Et 3, C C 2 Et 2 MsCl, Et 3 C 2 Et 2 97% C 2 Et 0 o C; 100% C 2 Et 38

Cycloaddition eactions with Allyl Cations [4 3] Cycloaddition CF 3 C 2 Ag I [43] Br Br Fe 2 (C) 9 [4 3] 39

Cycloaddition eactions with Allyl Anions [3 2] Cycloaddition S 2 S 2 C C 2 S C C Me 2 C Me 2 C 40

Cycloaddition eactions with Tetramethylene [3 2] Cycloaddition Me 3 Si Ac ( 3 P) 4 Pd Me 3 Si Pd tetramethylene 41

Cheletropic eactions Sulfolenes Disrotatory ring closure and opening S 2 S 2 S 2 S 2 S 2 S 2 42

Cheletropic eactions Sulfolenes LiMDS S S Br Δ S 2 β-ocimene Ts S 2 1) K 2) 3 S 2 210 o C 85% 43

eactions of Sulfur eagents Alkene Formation: amberg Backlünd earrangement Cl 2 S S 2 K, CCl 4 2 S S 2 Cl 2 S S 2 S 2 44

[3,3]-Sigmatropic earrangement Δ Cope earrangement xy-cope earrangement Δ 45

[3,3]-Sigmatropic earrangement Anionic xy-cope earrangement M Δ =, Me M k 1/2 at 66 o C Li no reaction MgBr no reaction a 1.2 h K 1.4 min MgBr K, TF TF 92% rt, 2 h 94% 46

[3,3]-Sigmatropic earrangement Aza-Cope earrangement Ar Ar C Ag 3 Et 23 o C 80% xy aza-cope rearrangement 47

[3,3]-Sigmatropic earrangement Claisen earrangement 143-140 o C 96% (E,E)-vinyl allyl ether threo-4-enone 145-170 o C 95% (E,Z)-vinyl allyl ether erythro-4-enone 48

[3,3]-Sigmatropic earrangement Claisen earrangement: Johnson Variation 3 C C(Et) 3 138 o C, 1 h 92% C 2 Et Et ketene acetal Et Et 49

[3,3]-Sigmatropic earrangement Claisen earrangement: Eschenmoser Variation Me 2 C Me C 3 C Me 2 Me amide acetal xylene 150 o C 70% Me 2 C Me 2 Me 2 Me 2 C ketene,-acetal 50

[3,3]-Sigmatropic earrangement Claisen earrangement: Ireland Variation 1) LDA, TF 2) TBDMSCl 78 o C TBDMS (E)-Silyl acetal 1) 78 o 2) 2 25 o C 89% threo 1) LDA, TF 23% MPA 2) TBDMSCl 78 o C TBDMS (Z)-Silyl acetal 1) 78 o 2) 2 25 o C 86% erythro 51

[3,3]-Sigmatropic earrangement Tandem Cope Claisen earrangement Δ 77% 23% Claisen Claisen Cope or 52

[2,3]-Sigmatropic earrangement [2,3]-Wittig earrangement G G or G or endo G G exo G = alkenyl, alkynyl G = acyl 53

[2,3]-Sigmatropic earrangement S Tf S K t Bu S S [2,3] sigmatropic rearrangement S ArC 2 SmI 2, MPA S Sm Ar Br S Ar 54

Ene eactions X Z Y ene enophile endo Z Y X exo Z X Y X, Y = C C, C, C S,,,, Z = C 2, 55

Ene eactions Ac 2, BF 3 C 2 Cl 2 ; 84% Ac 2 Metallo-ene reaction Cl 1) Mg, TF, 60 o C 2) C 2 82% C 2 Mg C 2 Cl Mg Mg Cl ene rx. MgCl 56

Electrocyclization and the everse Process Woodward-offmann rule system 4n electrons 4n2 electrons heat (M) con dis hν (LUM) dis con Me Me heat conrotatory 4e system Me Me M Me Me Me Me hν disrotatory 4e system Me Me LUM Me Me Me Me hν conrotatory 6e system LUM Me Me Me Me 57

Cationic Cyclization F CF 3 C 2 F C SiMe 3 65-70% SiMe 3 F C 58

Cyclization via Metallocycles Et 2 C Et 2 C i(cd) 2 3 P, 60 o C Et 2 C Et 2 C i Et 2 C Et 2 C Et 2 C Et 2 C Pd( 3 P) 2 (Ac) 2 TF, 50 o C Et 2 C Et 2 C Pd Et 2 C Et 2 C Me Pd( 3 Sb) 4 Me C 3, Ac E E PdX E E E = S 2 Me PdX Me E E E E 59

Periplanone-B A germacrane-type sesquiterpene that contains 3 isoprene units. The numbering follows the conventional decalin system. 2 1 10 6 Sex attractant and excitant pheromone of the American cockroach, Periplaneta americana, with activity at a threshold lower than 10 12 g 60

Periplanone-B Strategy for 10-membered ring formation 2 1 10 2 1 10 2 1 10 6 6 xy-cope 6 2 1 10 6 ing opening 2 1 6 10 xy-cope 2 1 6 10 2 1 10 2 1 10 1 10 6 X Me 2 C 6 S 3 6 ()-limonene 61

Periplanone-B 1 2, a, (1) Et, aney i (2) LiAl 4 6 (3) 3 C 2 C 2 1 2 3 C 2 =CLi K 18-crown-6 (1) EtC=C 2, g 2 (2) LDA; MeC=CC (3) Me 3 SnLi; Me 3 SiCl (4) Me 2 CuLi (5) m-cpba 2 10 EE 4 EE: Et EE 5 6 EE 6 (1) Me 3 SiCl; m-cpba (2) Me 2 Bu t SiCl (3) aq. Ac (4) ArSeC, 3 ; 2 2 (5) Bu t, K 2 SiMe 2Bu t 10 6 7 (1) Me 2 S=C 2 (2) Bu 4 F (3) Cr 3. 2 pyr 2 1 10 6 Periplanone-B (racemic) Still, W. C. J. Am. Chem. Soc. 1979, 101, 2493. 62

6 1 2 6 10 2 C C C 2 1 1 10 hν 1 10 4 5 (2:1 mixture) 6-cis isomer Periplanone-B C 2 =CMgBr 10 2 3 (2:1 mixture) (1) (Me 3 Si) 2 Li 175 o C 2 10 SS 2 C 3 1 (2) ai 4 6 6-trans isomer hν 1 (3) 110 o C (4) Bu t, K 2 6 K 18-crown-6 1 10 6 (4:1 mixture) (1) (Me 3 Si) 2 Li SeBr (2) 2 2 (3) Ac 2, aac 2 1 6 Me 2 S=C 2 2 1 10 6 (4) K 2 C 3 7 Periplanone-B (racemic) Schreiber, S. L. J. Am. Chem. Soc. 1984, 106, 4038. 63