Faculty of Computers and Information. Basic Science Department

Similar documents
Chapter 5 Oscillatory Motion

Chapter 15. Oscillatory Motion

Oscillatory Motion SHM

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

CHAPTER 12 OSCILLATORY MOTION

Chapter 14 Periodic Motion

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Simple Harmonic Motion Test Tuesday 11/7

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Physics 1C. Lecture 12B

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4.

Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

OSCILLATIONS ABOUT EQUILIBRIUM

Mechanics Oscillations Simple Harmonic Motion

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion

PREMED COURSE, 14/08/2015 OSCILLATIONS

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

Simple Harmonic Motion

Oscillations Simple Harmonic Motion

Chapter 14 Oscillations

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

AP Physics. Harmonic Motion. Multiple Choice. Test E

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc.

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

PHYSICS 1 Simple Harmonic Motion

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

University Physics 226N/231N Old Dominion University. Chapter 14: Oscillatory Motion

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Fundamentals Physics. Chapter 15 Oscillations

PreClass Notes: Chapter 13, Sections

Chapter 14 Oscillations

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

Chapter 13: Oscillatory Motions

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition)

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Chapter 15 - Oscillations

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

Oscillatory Motion. Solutions of Selected Problems

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Physics Mechanics. Lecture 32 Oscillations II

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Chapter 15. Oscillations

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 20 JJ II. Home Page. Title Page.

Mass on a Horizontal Spring

BSc/MSci MidTerm Test

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website:

Physics 106 Group Problems Summer 2015 Oscillations and Waves

Chapter 11 Vibrations and Waves

Chapter 16: Oscillations

Chapter 14 (Oscillations) Key concept: Downloaded from


Slide 1 / 70. Simple Harmonic Motion

Chapter 14: Periodic motion

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (NEW)

Mass on a Spring C2: Simple Harmonic Motion. Simple Harmonic Motion. Announcements Week 12D1

The distance of the object from the equilibrium position is m.

HOMEWORK ANSWERS. Lesson 4.1: Simple Harmonic Motion

Chapter 15 Periodic Motion

BSc/MSci EXAMINATION. Vibrations and Waves. Date: 4 th May, Time: 14:30-17:00

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Healy/DiMurro. Vibrations 2016

General Physics I Spring Oscillations

Chapter 15 Oscillations

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled?

15 OSCILLATIONS. Introduction. Chapter Outline Simple Harmonic Motion 15.2 Energy in Simple Harmonic Motion

1) SIMPLE HARMONIC MOTION/OSCILLATIONS

Simple Harmonic Motion Practice Problems PSI AP Physics B

CHAPTER 6 WORK AND ENERGY

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

Simple Harmonic Motion Practice Problems PSI AP Physics 1

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position.

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

CHAPTER 11 VIBRATIONS AND WAVES

General Physics (PHY 2130)

Vibrations and Waves MP205, Assignment 4 Solutions

The object of this experiment is to study systems undergoing simple harmonic motion.

Good Vibes: Introduction to Oscillations

Essential Physics I. Lecture 9:

Physics 101 Discussion Week 12 Explanation (2011)

Unit 2: Simple Harmonic Motion (SHM)

Simple Harmonic Motion Concept Questions

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

Simple Harmonic Motion

Transcription:

18--018 FCI 1

Faculty of Computers and Information Basic Science Department 017-018 Prof. Nabila.M.Hassan 18--018 FCI

Aims of Course: The graduates have to know the nature of vibration wave motions with emphasis on their mathematical descriptions and superposition. The fundamental ideas can be introduced with reference to mechanical systems which are easy to visualize. Developing the graduate's skills and creative thought needed to meet new trends in science. Supplying graduates with basic attacks and strategies for solving problems. 18--018 FCI 3

1- A particle oscillates with simple harmonic motion, so that its displacement varies according to the expression x = (5 cm)cos(t + π/6) where x is in centimeters and t is in seconds. At t = 0 find (a) the displacement of the particle, (b) its velocity, and (c) its acceleration. (d) Find the period and amplitude of the motion. Solution: The displacement as a function of time is x(t) = A cos(ωt + φ). Here ω = /s, φ = π/6, and A = 5 cm. The displacement at t = 0 is x(0) = (5 cm)cos(π/6) = 4.33 cm. (b) The velocity at t = 0 is v(0) = -ω(5 cm)sin(π/6) = -5 cm/s. (c) The acceleration at t = 0 is a(0) = -ω (5 cm)cos(π/6) = -17.3 cm/s. (d) The period of the motion is T = π sec, and the amplitude is 5 cm. 18--018 FCI 4

1- An oscillator consists of a block of mass 0.50 kg connected to a spring. When set into oscillation with amplitude 35 cm, it is observed to repeat its motion every 0.50 s. The maximum speed is : (a) 4.4 m/s,(b) 44.0 m/s,( c) 0.44 m/s - A particle executes linear harmonic motion about the point x = 0. At t = 0, it has displacement x = 0.37 cm and zero velocity. The frequency of the motion is 0.5 Hz. The max speed of the motion equal: (a) 0.59 cm/s,(b) 5.9 cm/s,( c) 0.059 cm/s 3- An oscillating block-spring system has a mechanical energy of 1.0 J, amplitude of 0.10 m, and a maximum speed of 1. m/s. The force constant of the spring is, (a) 100 N/m,(b) 00 N/m,( c) 0 N/m 4- An oscillating block-spring system has a mechanical energy of 1.0 J, amplitude of 0.10 m, and a maximum speed of 1. m/s. The mass of the block is, (a) 1.4 kg,(b) 14.0 kg,( c).140 kg 18--018 FCI 5

1- An oscillator consists of a block of mass 0.50 kg connected to a spring. When set into oscillation with amplitude 35 cm, it is observed to repeat its motion every 0.50 s. The maximum speed is : (a) 4.4 m/s,(b) 44.0 m/s,( c) 0.44 m/s - A particle executes linear harmonic motion about the point x = 0. At t = 0, it has displacement x = 0.37 cm and zero velocity. The frequency of the motion is 0.5 Hz. The max speed of the motion equal: (a) 0.59 cm/s,(b) 5.9 cm/s,( c) 0.059 cm/s 3- An oscillating block-spring system has a mechanical energy of 1.0 J, amplitude of 0.10 m, and a maximum speed of 1. m/s. The force constant of the spring is, (a) 100 N/m,(b) 00 N/m,( c) 0 N/m 4- An oscillating block-spring system has a mechanical energy of 1.0 J, amplitude of 0.10 m, and a maximum speed of 1. m/s. The mass of the block is, (a) 1.4 kg,(b) 14.0 kg,( c).140 kg 18--018 FCI 6

Content: Part II: Waves Chapter 1 Oscillation Motion - Motion of a spring: - Energy of the Simple Harmonic Oscillator: -Comparing SHM with uniform motion - The simple pendulum: - Damped Oscillations: - Forced Oscillation 18--018 FCI 7

Objectives: Student will be able to: -Calculate the periodic time of S H M for simple pendulum. -- Define the damped motion - Define the resonance. -Compare between free, damped and derived oscillations 18--018 FCI 8

The simple pendulum: A simple pendulum is a mechanical system that exhibits motion consists of a small mass, which is suspended from a light wire or string of length L. The displacement is defined by the arc S. The net force on the bob (mass) is tangent to the arc and equals ( F mgsin ) For small angles (sin θ θ ), then the force equal F mgsin mg 18--018 FCI 9

A simple oscillation of the pendulum, the resulting force is F mgsin mg when θ is small max The displacement is directly related to θ S = L θ so that θ = S/ L, then F m L g Apply Newton's second law for motion in the tangential direction F d m dt m g L The equation of motion for simple pendulum becomes d dt max g L cos( t ) is the max angular position and the angular frequency g L T 18--018 FCI 10 L g

Example (1) a) How much energy is stored in the spring of a toy gun that has a force constant of 50 N /m and is compressed 0.150 m? Sol: The energy can be found directly from equation PE el 1 KX 1 (50N / m)(0.150m 0.563N. m 0. 563J ) 18--018 FCI 11

b)in absence of friction and neglecting the mass of the spring, at what speed will a.00 g plastic bullet be ejected from the gun? Sol: Since there is no friction, the potential energy is converted into kinetic energy. v PE m 1 1 mv KX. 563J l 1 (0.563J ) 10 3 kg KEF PE el 1 3.7m/ s 18--018 FCI 1

Damped Oscillations: Where the force is proportional to the speed of the moving object and acts in the direction opposite the motion. The retarding force can be expressed as: R = - bv ( where b is a constant called damping coefficient) and the restoring force of the system is kx, then we can write Newton's second law as dx d x Fx kxbvx ma kx b m x dt dt When the retarding force is small compared with the max restoring force that is, b is small the solution is, b m t x( t) Ae cos( t ) k m b ( m ) 18--018 FCI 13

represent the position vs time for a damped oscillation with decreasing amplitude with time The fig. shows the position as a function in time of the object oscillation in the presence of a retarding force, the amplitude decreases in time, this system is know as a damped oscillator. The dashed line which defined the envelope of the oscillator curve, represent the exponential factor 18--018 FCI 14

The fig. represent position versus time: A - under damped oscillator b- critical damped oscillator c- Overdamped oscillator. as the value of "b" increase the amplitude of the oscillations decreases more and more rapidly. When b reaches a critical value b c ( not oscillate and is said to be critically damped. And when b c / m o the system is overdamped. b c / m o ) the system does 18--018 FCI 15

Forced Oscillation: For the forced oscillator is a damped oscillator driven by an external force that varies periodically Where F( t) Fo sin t where ω is the angular frequency of the driving force and F o is a constant From the Newton's second law F ma F o sin t dx b dt kx d x m dt x Acos( t ) A ( F o ) o / m b m 18--018 FCI 16

o k m is the natural frequency of the un-damped oscillator (b=0). The last two equations show the driving force and the amplitude of the oscillator which is constant for a given driving force. For small damping the amplitude is large when the frequency of the driving force is near the natural frequency of oscillation, or when ω ω o the is called the resonance and the natural frequency is called the resonance frequency. 18--018 FCI 17

Amplitude versus the frequency, when the frequency of the driving force equals the natural force of the oscillator, resonance occurs. Note the depends of the curve as the value of the damping coefficient b. 18--018 FCI 18

Note that: The applied force F is in phase with the velocity. The rate at which work is done on the oscillator by F equals the dot product F. v ; this rate is the power delivered to the oscillator. Because the product F. v is a maximum when F and v are in phase, we conclude that at resonance the applied force is in phase with the velocity and the power transferred to the oscillator is a maximum. 18--018 FCI 19

Summary of the chapter 1: 1- The acceleration of the oscillator object is proportional to its position and is in the direction opposite the displacement from equilibrium, the object moves with SHM. The position x varies with time according to, x( t) Acos( t ) - The time for full cycle oscillation is defined as the period, T /. For block spring moves as SHM on the frictionless surface with a period T k m 18--018 FCI 0

and 3- The frequency is defined as the number of oscillation per second, is the inverse of the period f 1 1 T k m 4- The velocity and the acceleration of SHM as a function of time are v dx dt Asin( t ) a d x dt Acos( t ) We not that the max speed is Aω, and the max acceleration is Aω. The speed is zero when the oscillator is at position of x=± A, and is a max when the oscillator is at the equilibrium position at the equilibrium position x=0. 18--018 FCI 1

5- The kinetic energy and potential energy for simple harmonic oscillator are given by, 1 1 K mv m A sin ( t ) U 1 kx 1 ka cos ( t ) The total energy of the SHM is constant of the motion and is given by E 1 ka 6- A simple pendulum of length L moves in SHM for small angular displacement from the vertical, its period is T L g 18--018 FCI

7- For the damping force R = - bv, its position for small damping is described by b m t x( t) Ae cos( t ) k b ( m m ) 8 - If an oscillator is driving with a force ( t) F sin t F o it exhibits resonance, in which the amplitude is largest when driving frequency matches the natural frequency of the oscillator. 18--018 FCI 3

What is the effect on the period of a pendulum of doubling its length? T L L / g L L T L L / g T 1. 414T L TL L 18--018 FCI 4

Useful website http://cnx.org/content/m15880/latest/ http://www.acs.psu.edu/drussell/demos/sho/ma ss-force.html 18--018 FCI 5