Interval Oscillation of Nonlinear Differential Equation with Damped Term

Similar documents
ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER

Solutions to assignment 3

New Oscillation Criteria For Second Order Nonlinear Differential Equations

LAPLACE TRANSFORMS. 1. Basic transforms

Positive and negative solutions of a boundary value problem for a

Graduate Algorithms CS F-18 Flow Networks

CSC 373: Algorithm Design and Analysis Lecture 9

Bisimulation, Games & Hennessy Milner logic p.1/32

e t dt e t dt = lim e t dt T (1 e T ) = 1

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a

Linear Quadratic Regulator (LQR) - State Feedback Design

Communications inmathematicalanalysis

4.8 Improper Integrals

Chapter Introduction. 2. Linear Combinations [4.1]

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

EECE 301 Signals & Systems Prof. Mark Fowler

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

International ejournals

1 The Network Flow Problem

Control Systems -- Final Exam (Spring 2006)

Contraction Mapping Principle Approach to Differential Equations

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

Problem Set 9 Due December, 7

Example on p. 157

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

Matching. Slides designed by Kevin Wayne.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Chapter 2. First Order Scalar Equations

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Three Dimensional Coordinate Geometry

FUZZY n-inner PRODUCT SPACE

Introduction to SLE Lecture Notes

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

Randomized Perfect Bipartite Matching

5.1-The Initial-Value Problems For Ordinary Differential Equations

Stability in Distribution for Backward Uncertain Differential Equation

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Vidyalankar. 1. (a) Y = a cos dy d = a 3 cos2 ( sin ) x = a sin dx d = a 3 sin2 cos slope = dy dx. dx = y. cos. sin. 3a sin cos = cot at = 4 = 1

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

Direct Sequence Spread Spectrum II

The Contradiction within Equations of Motion with Constant Acceleration

6.8 Laplace Transform: General Formulas

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

Hadamard-Type Inequalities for s-convex Functions

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Explicit form of global solution to stochastic logistic differential equation and related topics

September 20 Homework Solutions

Cylindrically Symmetric Marder Universe and Its Proper Teleparallel Homothetic Motions

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

GENESIS. God makes the world

OSCILLATORY BEHAVIOR OF A FRACTIONAL PARTIAL DIFFERENTIAL EQUATION

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Maximum Flow. Flow Graph

Math 124B January 24, 2012

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network

Released Assessment Questions, 2017 QUESTIONS

Chapter 8 The Complete Response of RL and RC Circuits

6.2 Transforms of Derivatives and Integrals.

3. Renewal Limit Theorems

AN IMPROVED CREEP AND SHRINKAGE BASED MODEL FOR DEFLECTIONS OF COMPOSITE MEMBERS REINFORCED WITH CARBON FIBER REINFORCED BARS

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Endpoint Strichartz estimates

Operators related to the Jacobi setting, for all admissible parameter values

18.03SC Unit 3 Practice Exam and Solutions

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

B Signals and Systems I Solutions to Midterm Test 2. xt ()

e 2t u(t) e 2t u(t) =?

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

CHAPTER 7. Definition and Properties. of Laplace Transforms

Today: Max Flow Proofs

Graphs III - Network Flow

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

And I Saw a New Heaven

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Solutions to Assignment 1

Mathematics 805 Final Examination Answers

SOME USEFUL MATHEMATICS

ENGI 9420 Engineering Analysis Assignment 2 Solutions

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

T-Rough Fuzzy Subgroups of Groups

Weighted Inequalities for Riemann-Stieltjes Integrals

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

The realization of low order FSM method and its application Jiai He1,a, Xiangyang Liu1,b, Chengquan Pei2,3,c

B E E R W I N E M E N U

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

Mahgoub Transform Method for Solving Linear Fractional Differential Equations

Transcription:

Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Inerv Oiion of Noniner Differeni Equion wih Dmped Term Yun-Hui Zeng Deprmen of Mhemi nd Compuion Siene, Hengyng Norm Univeriy,Hunn, 4,Chin hj89@inom Abr- In hi pper,we udy oiion of eond-order noniner differeni equion wih dmped erm nd oninu-ou diribued rgumenby uing verging funion nd Rii ehnique, ome new uffiien ondiion re ebih-ed, whih re differen from mo known one in he ene h hey re bed on he informion ony on equene of ubinerv of,, rher hn on he whoe hf-ine Keyword- Noniner; Inerv Oiion; Coninuou Diri-bued Argumen I INTRODUCTION Thi pper i onerned he oiory of eond-order noniner differeni equion wih dmped erm nd on- inuou diribued rgumen Where ( r () ( y()) k( y())) p() k( y()) + q (, ) f( y (), yg ( (, ))) d( ), () Throughou hi pper,we wy ume h ( H ) r (), p () CIR (, ), nd p ( ), r () I [, ), R(, ) for I, d, I [, ) r () ( H ) f ( xy, ) CR ( RR, ) nd f ( xy, ) h igned x nd y if hey hve me ign, nd f ( xy, ) f( xf ) ( x), f ( y) where he funion f ( x ) nd ( ) f( x) k, xr, y k, y, where k nd k re nonnegive onn H k ( ) for y ; nd ( y) y( g(, )) k( y( )) k,, [, ], for y R, g(, ) 4 ( H 4) q (, ) CI ( [, ], R ), g (, ) C([, ) [, ], R), g (, ) for [, ], g (, ) h oninuou nd poiive pri derivive on I [, ] wih repe o he fir vribe nd nondereing wih repe o he eond vribe, repeivey im inf g (, ) [, b] ( H 5) u( ) C([, ], R) i nondereing, nd he inegr of () i in he ene of Riemunn-ieje y ():, R, i ed ouion of () if (), In he eque i wi wy be umed h ouion of () exi for ny A ouion y() of () i ed oiory if i h rbirry rge zero, oherwie i i ed nonoiory We re h funion y ifie () for When ( y), k( y( )) y( ), q (, ) f( y (), yg ( (, ))) d( ) repe q ( ) f( y ( )) g( y ( )), Equion () redue o () ( r() y()) p() y() q() f( y()) g( y()), () - 7 -

Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 nd when r() ndp(), Equion () redue o () y() q() f( y()) g( y()) () The oiion of () nd for i priur e uh he iner equion y() q() y()), (4) he noniner equion ( ry ( ) ( )) q ( ) f( y ( )), (5) nd he noniner equion wih dmping erm ( r() y()) p() y() q() f( y()), (6) h been diued by numerou uhor by ever differen mehod (ee Pper [-6] nd he referene herein) An imporn oo in he udy of oiory behvior of Equion () (6) i he verging ehnique whih goe bk fr he i reu of Winner nd Hrmn [9] providing uffiien ondiion for he oiion of (4) The reu of Winner w improved by Kmenev [], nd exenion of Kmenev rierion hve been obined for (4) by Phio [5], where for (5) by Li [] For (6) he reu of Phio hve been exended by Gre [8], nd Gre reu hve been refined reeny by Li [6] From he rum eprion heorem i i er h he oiion of (4) i ony n inerv propery, ie, if here exi equene of ubinerv [ i, bi] ofi, where i, uh h for eh I here exi ouion of (4) h h e wo zero in [, b] hen every ouion of (4) i oiory i i In 99 EL-Syed [5] ebihed n inereing inerv rierion for he oiion of fored eond-order equion, bu he reu i no very hrp, beue omprion wih equion of onn oeffiien i ued in he proof In997, Hung [7] preened inerv rieri for he oiion nd he nonoiion of he eond-order iner differeni Equion (5) nd Li nd Agrw [, 4] ebihed more gener reu for noniner fored Equion (5) We remrk h, Kong [], Li [7], Li nd Agrw [, 4] empoyed he ehnique in he work of Phio [5] nd obined ever inerv rieri oiion reu for he eond-order iner Equion (5) nd noniner Equion () (4), However, hey nno be ppied o he noniner differeni Equion () In hi pper by empoying generized Ri ehniqu-e [], we h preen ever new inerv rieri for he oiion of (), ie, rieri whih invove he behvior of () (or of r, p, q, f, g nd k) ony on equene of ubinerv of I our reu invove Kmenev ype ondiion nd improve nd exend he reu of Kmenev [], Li Agrw [, 4], nd Li [8] Oher reed oiion reu n refer o [,, 4, nd ] An imporn onribuion of our udy i h we h dipene wih hee ondiion We y h funion H H(, ) beong o of funion X, denoed by H X, if H C( D, R ), D (, ):, whih ifie where And h pri derivive H nd H on uh h where h, h L ( D, R) o H (,), H (, ), for, (7) H H h(, ) H (, ) h(, ) H (, ),, (8) For hor nonion we define he funion II MAIN RESULTS AND PROOF Q () q (, ) d ( ) We fir prove wo Lemm whih wi be uefu for ebihing oiion rieri for Eq() - 8 -

Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Lemm Suppoe h umpion 5 y () on, b [, ) For ny funion v () ( H ) ( H ) hod, nd h y() i ouion of () uh h C (, I R ), Dfine r ( ) ( y ( )) k( y( )) w () v () yg ( (, )), () on, b hen for ny H (, ) X, we hve H (,) bkkvqd () () Hbw (,) () Proof From () nd (), we hve for b b 4kk b kp () v() rv ()() h (,) b( ) Hb (,) d (),, () ()( () ( ()) ( ())) () v () v r y k y vr () () ( y ()) k( y()) y( g (, )) g(, ) w w v () yg ( (, )) y ( g(, )) v () ()( () ( ()) () v p k y w v () yg ( (, )) q (, ) f( y ( ), yg ( (, ))) d( )) yg ( (, )) v ()( r () ( y ()) k( y()) y( g (, )) g(, ) y ( g(, )) v() p() v() k( y()) w () v () yg ( (, )) v () q (, ) f( y (), yg ( (, ))) d( ) yg ( (, )) vr () () ( y ()) k( y()) y( g (, )) g(, ) y ( g(, )) v() p() v() k( y()) w () kkvq () () v () yg ( (, )) v() p() v() k( y()) w () kkvq () () v () yg ( (, )) () () ( ()) ( ()) ( (, )) (, ) v r y k y y g g y ( g(, )) v() r() ( y()) k( y()) y( g(, )) g(, ) vr () () ( y ()) k( y()) w () In view of v() p() [ ] w () kkvq () () v () r () ( y ()) ( H ),We obin by he bove equiy y( g(, )) g(, ) vr () () ( yk () ( y()) () w (4) yied Muipying (5) by (, ) v() p() w() [ k ] w() kkv () Q () kk w (), v () r () vr () () p () v() w() kkv() Q() kk4 w () [ k ] w( ) (5) vr () () r () v () H, inegring i wih repe o from o, for b,, nd uing (7) nd (8) - 9 -

Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 H (, kkvqd ) ( ) ( ) kk Hwd (, ) ( ) H (, ) w( d ) vr ()() H k p () v() (, )( ) wd ( ) Hw (, ) ( ) [ h(, ) Hw (, ) ( ) kk vr ()() H (, ) w( )] d H k kkh (, ) H (, w ) ( ) [ w ( ) vr ()() vr ( ) ( ) kp () v( ) h k k r ( ) v ( ) ( (, ) ( ) (, ))] kp () v( ) 4 k k r ( ) v ( ) H (, w ) ( ) p () v() (, )( ) w ( ) H rv ()()[ h (,) ( ) H (,)] d 4kk Now, eing b, in he bove inequiy, we obin () kp () v() rv ()()[ h (,) ( ) H (,)] d Lemm Suppoe h umpion ( H ) ( H 5 ) hod And h y() be ouion of () uh h y () on, [, ), for ny funion v () C (, I R ),e w () be defined by () on, Then for ny H X, (, ) () () Hw (, ) () H kkvqd 4kk kp () v() rv ()() h (, ) ( ) H (, ) d (6) Proof Simir o he proof of Lemm, we hve (6) The foowing heorem i n immedie reu from Lem-m nd Lemm Theorem Aume h ( H) ( H5) hod nd h for ome (, b), nd for ome H X, H (, ) H (, kkvqd ) () () Hb (,) b H (,) bkkvqd ()() 4 k kh(, ) kp () v() rv ()() h (, ) ( ) H (, ) d () () ()() (,) ( ) (,) 4 kkh 4 ( b, ) b kp v rv h b Hb d (7) Then every ouion of () h e one zero inb, Proof Suppoe he onrry hen wihou o of generiy we my ume h here i ouion y of ()uh h y() for (, b) From Lemm nd, we find h boh () nd (6) hod Dividing () nd (6) by Hb (,) nd H (, ), repeivey, nd hen dding hem, we obin - -

Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 H (, ) (, ) () () H kkvqd Hb (,) b H (,) bkkvqd () () 4 uk k H (, ) kp () v() rv ()() h (, ) ( ) H (, ) d 4 ukk4h ( b, ) b kp () v() rv ()() h (,) b ( ) Hb (,) d, whih onrdi umpion (7) Theorem Aume h ( H) ( H5) hod If nd imup H ( kkvq, ) ( ) ( ) imup H ( kkvq, ) ( ) ( ) kp rv ()() () v() [ h (, ) ( ) H(, ) d, (8) 4k k kp rv ()() () v() [ h (, ) ( ) H(, ) d (9) 4k k For ome H X, v C (, I R ), nd for eh, hen every ouion of () i oiory Proof For ny T, e T, nd in (8) we hooe, Then exi n, uh h H (, kkvq ) () () 4kk4 rv ()()( h(, ) In (9) we hooe, Then exi b, uh h b H (,) bkkvq () () 4kk4 kp () v() ( ) H(, )) d () kp rv ()()( h(, ) () v() ( ) H (, )) d () Combining () nd () we obin (7) The onuion hu ome from Theorem For he e where h( ) h ( ) The ub of X onining uh H : H( ) X, we hve h, nd denoe hem h ( ) H ( ) i denoed by X, Appying Theorem o X, we obin Theorem Aume h ( H) ( H5) hod If for eh T, here exi vc (,, R ), H X, nd, Ruh h T, nd H ( ) kk[ v( ) Q( ) v( ) Q( )] d [()() rv r( v )( )] h(, d ) 4k k 4 [ r( v ) ( ) p( v ) ( ) k k rv () () ] pvh ()()( ) H ( d ) 4 kp () v( ) kp ( ) v( ) [()()( rv ) 4 k k r( ) v( ) ( ) ] H( ) d, () 4 r ( ) v ( ) r( ) v( ) hen every ouion of () i oiory b Proof Le b Then Hb ( ) H ( ) H ( ) nd for ny w L[, b], we hve b wd () w( d ) - -

Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Hene b Hb ( wd ) ( ) H ( w ) ( d ) Thu () impie h (7) hod for H X, vc (,, R ), nd herefore every ouion of () i oiory by Theorem The bove oiion rieri, we n obin differen uffiien ondiion for oiion of ouion of () by hoie of H (, ) Le H (, ) ( ),, where i onn ed o he foowing Corory Corory Aume h ( H) ( H5) hod Then every ouion of () i oiory provided for eh nd (,, R ), uh h he foowing wo inequiie hod: ome, here exi funion nd Define nd e where i onn v C imup ( ) () () kp () v( ) ()()( )] d, () v Q rv 4 kk r ( ) v ( ) imup ( ) () () kp () v( ) ()()( )] d (4) k k v Q rv 4 kk r ( ) v ( ) Proof The proof i imir o h of Theorem Theorem 4 Aume h 5 for eh R() d, r (), H (, ) [ R () R ( )],, ( H ) ( H ) hod, nd im R ( ) Then, every ouion of () i oiory provided nd ome he foowing wo inequiie hod: kk imup ( R( ) R( )) kkq( ) R () p () ] d 4 kkr ( ) 4( ) (5) nd Proof Le v () Then, we hve kk imup ( R( ) R( )) kkq( ) R () p () ] d 4 kkr ( ) 4( ) (6) h(, ) [ R() R( )] r () nd h (, ) [ R() R( )] r () - -

Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Sine nd rh () (,) d rh () (,) d In view of im R ( ) I foow h r () r () [ R () R ()] d r () r () [ R () R ()] d Now, from (5) nd (7), we hve imup ( R( ) R( )) k k Q( ) R () rh d [ ( ) ( )] R R im ( ) (, ) 4 kkr ( ) 4 kk( ) [ ( ) ( )] R R (7) im ( ) (, ) 4 kkr ( ) 4 kk( ) rh d (8) r () p () [ (, ) (, )] 4 k kr ( ) r ( ), h H d r ( ) imup ( R( ) R( )) k kq( ) d R () imup [ h (, ) R () 4 k k r() r () h (, ) p( ) 4 k kr ( ) r ( ) H(, )] r ( ) p( ) d imup [ (, )] H d R () 4 k k r() r () imup [( R ( ) R ( )) R () p () p () [ kkq ( ) ] d ( ( ) ( )) R R ] d 4 k kr ( ) kk r ( ) imup h (, ) d () 4 () R kk4r imup ( R( ) R( )) ( kkq( ) R () p () ) 4 k kr ( ) p () ( ( ) ( )) kkr ( ) R R d 4 kk( ) ie, (8) hod Simiry (6) nd (8) impy h (9) hod Thu by Theorem every ouion of () i oiory ACKNOWLRDGEMENT Thi rerh w uppored by eduion foundion of Hunn Provine(C54), Cuivion of young eher of Hengyng Norm Univeriy of Chin nd Conru progrm of he key diipine in Hunn Provine[()76] REFERENCES [] J W Bker, Oiion heorem for eond order dmped noniner differeni equion, SIAM J Mh An 97,5, 7-4 [] G J Buer, The oiory behvior of eond order noniner differeni equion wih dmping, J Mh An App 977,57, 7-89 [] T A Buron nd R C Grimmer, Sbiiy of ( ru ) f ( u) g( u), Monh Mh 97,74, - [4] R Byer, B J Hrri nd M K Kwong, Weighed men nd Oiion ondiion for eond order mrix differeni equion, J - -

Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Differeni Equion 986,6, 64-77 [5] M A E-Syed, An oiion rierion for fored eond order iner differeni equion Pro Amer Mh So 99,8, 8-87 [6] S R Gre, Oiion heorem for noniner differ-eni equion of eond order, JMh An App 99,7, -4 [7] S R Gre nd B S Li, Inegr verging ehni-que for he oiion of eond order noniner differeni equion, J Mh An App 99,49, 77- [8] S R Gre nd B S Lind C C Yeh, Oiion heorem for noniner eond order differeni equion wih noniner dmping erm, SLAM J Mh An984,5, 8-9 [9] P Hrmn, On nonoiory iner differeni equion of eond order, Amer J Mh 95,74,89-4 [] I V Kmenev, Oiion rieri reed o verging of ouion of eond order differeni equion,(n Ruin), Differeni nye Urvnenyi 974,,46-5 [] Q Kong, Inerv rieri for oiion of eond order iner ordinry differeni equion, J MhAn App 999,9, 58-7 [] W T Li, Oiion of erin eond-order noniner differeni equion, J Mh An App 998,7, -4 [] W T Li nd R P Agrw, Inerv oiion rieri for eond order noniner differeni equion wih dmping, Compuer Mh Appi,4(/), 7- [4] W T Li nd R P Agrw, Inerv oiion rieri reed o inergr verging ehnique for erin noniner differeni equion, J Mh An App,45, 7-88 [5] Ch G Phio, Oiion heorem for iner differen-i equion of eond order, Arh Mh (Be)989,5, 48-49 [6] W T Li nd M Y Zhng nd X L Fei, Oiion rieri for eond order noniner differeni equion wih dmping erm, Indin J Pure App Mh999, (), 7-9 [7] C C Hung, Oiion nd nonoiion for eond order iner differeni equion, J Mh An App,997,, 7-7 [8] W T Li, Inerv oiion rieri for eond order noniner differeni equion wih dmping, Tiwnee Joun of Mhmi,,Vo 7\, 46-475 [9] W T Li nd R P Agrw, Inerv rieri for eond-order noniner perurbed differeni equion, Compuer Mh Appi, 4,47, 75-765 Yun Hui Zeng(978), me, nive of Hengyng, Hunn, P R Chin Curreny,he i n oie profeor wih Hengyng Norm Univeriy Hi min reerh inere inude biiy nd oiion heory of differeni equion - 4 -