Chaos and Time-Series Analysis

Similar documents
Chaotic Vibrations. An Introduction for Applied Scientists and Engineers

Nonlinear Dynamics, Psychology, and Life Sciences, Vol.8, No.1, January, Society for Chaos Theory in Psychology & Life Sciences

Introduction to Applied Nonlinear Dynamical Systems and Chaos

I NONLINEAR EWORKBOOK

DIFFERENTIAL GEOMETRY APPLIED TO DYNAMICAL SYSTEMS

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

Dynamical Systems with Applications using Mathematica

Dynamical Systems with Applications

vii Contents 7.5 Mathematica Commands in Text Format 7.6 Exercises

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

Simplest Chaotic Flows with Involutional Symmetries

The Transition to Chaos

Contents Dynamical Systems Stability of Dynamical Systems: Linear Approach

Elements of Applied Bifurcation Theory

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos

Elements of Applied Bifurcation Theory

DYNAMICAL SYSTEMS. I Clark: Robinson. Stability, Symbolic Dynamics, and Chaos. CRC Press Boca Raton Ann Arbor London Tokyo

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS

Chaotic Modelling and Simulation

APPLIED SYMBOLIC DYNAMICS AND CHAOS

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

ANALYTICAL MECHANICS. LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS

Patterns in Nature 8 Fractals. Stephan Matthiesen

Information Dynamics Foundations and Applications

Infinite-Dimensional Dynamical Systems in Mechanics and Physics

Multistability in the Lorenz System: A Broken Butterfly

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

An Introduction to Computer Simulation Methods

What is Chaos? Implications of Chaos 4/12/2010

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

FROM EQUILIBRIUM TO CHAOS

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

Control Theory in Physics and other Fields of Science

Fractals in Science. Armin Bunde Shlomo Havlin (Eds.) Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE

Nonlinear Oscillations and Waves in Dynamical Systems

Recent new examples of hidden attractors

Simple conservative, autonomous, second-order chaotic complex variable systems.

APPLIED NONLINEAR DYNAMICS

A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors

Fractals, Dynamical Systems and Chaos. MATH225 - Field 2008

CHAOS/FRACTAL

MULTISTABILITY IN A BUTTERFLY FLOW

Nonlinear Dynamics and Chaos Summer 2011

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli

Coexisting Hidden Attractors in a 4-D Simplified Lorenz System

Can a Monkey with a Computer Create Art?

Lecture 20: ODE V - Examples in Physics

One dimensional Maps

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

B5.6 Nonlinear Systems

A New Hyperchaotic Attractor with Complex Patterns

Chaos & Recursive. Ehsan Tahami. (Properties, Dynamics, and Applications ) PHD student of biomedical engineering

Constructing Chaotic Systems with Total Amplitude Control

Unit Ten Summary Introduction to Dynamical Systems and Chaos

NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE

From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys

One Dimensional Dynamical Systems

Phase-Space Reconstruction. Gerrit Ansmann

Large Fluctuations in Chaotic Systems

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

Simple Chaotic Flows with a Curve of Equilibria

Control and synchronization of Julia sets of the complex dissipative standard system

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

CHAOS -SOME BASIC CONCEPTS

xt+1 = 1 ax 2 t + y t y t+1 = bx t (1)

Stochastic Model for Adaptation Using Basin Hopping Dynamics

Population Games and Evolutionary Dynamics

High-Dimensional Dynamics in the Delayed Hénon Map

Chaos. Lendert Gelens. KU Leuven - Vrije Universiteit Brussel Nonlinear dynamics course - VUB

CMSC 425: Lecture 12 Procedural Generation: Fractals

Bifurcation Analysis, Chaos and Control in the Burgers Mapping

Mathematical Theory of Control Systems Design

ECE 8803 Nonlinear Dynamics and Applications Spring Georgia Tech Lorraine

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

Irregular Attractors

Chaotic motion. Phys 750 Lecture 9

Crisis in Amplitude Control Hides in Multistability

Biomedical Signal Processing and Signal Modeling

Fractals. R. J. Renka 11/14/2016. Department of Computer Science & Engineering University of North Texas. R. J. Renka Fractals

A Search for the Simplest Chaotic Partial Differential Equation

Chaos and the limits of predictability for the solar-wind-driven magnetosphere ionosphere system

1 Random walks and data

On Universality of Transition to Chaos Scenario in Nonlinear Systems of Ordinary Differential Equations of Shilnikov s Type

NONLINEAR DYNAMICS PHYS 471 & PHYS 571

Differential Equations

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

Chaos. Dr. Dylan McNamara people.uncw.edu/mcnamarad

HI CAMBRIDGE n S P UNIVERSITY PRESS

Stability and Bifurcation in the Hénon Map and its Generalizations

Modeling the Duffing Equation with an Analog Computer

Analysis of Dynamical Systems

Maps. A map is a dynamical system with discrete time. Such dynamical systems are defined by iterating a transformation φ of points x.

Reconstruction Deconstruction:

Deborah Lacitignola Department of Health and Motory Sciences University of Cassino

Introduction to Classical Chaos

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

Transcription:

Chaos and Time-Series Analysis Julien Clinton Sprott Department of Physics Universitv of Wisconsin Madison OXTORD UNIVERSITY PRESS

Contents Introduction 1.1 Examples of dynamical systems 1.1.1 Astronomical systems 1.1.2 The Solar System 1.1.3 Fluids 1.1.4 Nonphysical systems 1.2 Driven pendulum 1.3 Ball on an oscillating floor 1.4 Dripping faucet 1.5 Chaotic electrical circuits 1.5.1 Inductor-diode circuit 1.5.2 Chua's circuit 1.5.3 Jerk circuits 1.5.4 Relaxation oscillators 1.6 Other demonstrations of chaos 1.7 Exercises 1.8 Computer project: The logistic equation One-dimensional maps 2.1 Exponential growth in discrete time 2.2 The logistic equation 2.3 Bifurcations in the logistic map 2.3.1 0 <.4 < 1 case 2.3.2 1 <.4 < 3 case 2.3.3 3 < A < 3.44948... case 2.3.4 3.44948...< A< 3.56994... case 2.3.5 3.56994... < A < 4 case 2.3.6 A = 4 case 2.3.7 A > 4 case 2.4 Other properties of the logistic map with.4 2.4.1 Unstable periodic orbits 2.4.2 Eventually fixed points 2.4.3 Eventually periodic: points 2.4.4 Probability distribution 2.4.5 Nonrecursive representation 2.5 Other one-dimensional maps 2.5.1 Sine map

x Contents 2.5.2 Tent map 2.5.3 General symmetric map 2.5.4 Binary shift map 2.6 Computer random-number generators 2.7 Exercises 2.8 Computer project: Bifurcation diagrams 3 Nonchaotic multi-dimensional flows 3.1 Exponential growth in continuous time 3.2 Logistic differential equation 3.3 Circular motion 3.4 Simple harmonic oscillator 3.5 Driven harmonic oscillator 3.6 Damped harmonic oscillator 3.6.1 Overdamped case 3.6.2 Critically damped case 3.6.3 Underdamped case 3.7 Driven damped harmonic oscillator 3.8 Van der Pol equation 3.9 Numerical solution of differential equations 3.9.1 Euler method 3.9.2 Leap-frog method 3.9.3 Second-order Runge^Kutta method 3.9.4 Fourth-order Runge^Kutta method 3.10 Exercises 3.11 Computer project: Van der Pol equation 4 Dynamical systems theory 4.1 Two-dimensional equilibria 4.2 Stability of two-dimensional equilibria 4.3 Damped harmonic oscillator revisited 4.4 Saddle points 4.5 Area contraction and expansion 4.6 Xonchaotie three-dimensional at tractors 4.6.1 Equilibrium points 4.6.2 Limit, cycles 4.6.3 Tori 4.7 Stability of two-dimensional maps 4.8 Chaotic dissipative flows 4.8.1 Xonautonomous chaotic flows 4.8.2 Lorenz attract or 4.8.3 Rossler attractor 4.8.4 Simplest quadratic chaotic flow 4.8.5 Jerk systems 4.9 Shadowing 4.10 Exercises

Contents xi 4.11 Computer project: The Loreoz attractor 5 Lyapunov exponents 5.1 Lyapunov exponent for one-dimensional maps 5.1.1 Binary shift map 5.1.2 Tent map 5.1.3 Logistic map 5.1.4 Other one-dimensional maps 5.2 Lyapunov exponents for two-dimensional maps 5.2.1 Largest Lyapunov exponent 5.2.2 Henon map 5.2.3 Area expansion and contraction 5.3 Lyapunov exponent for one-dimensional flows 5.4 Lyapunov exponents for two-dimensional flows 5.5 Lyapunov exponents for three-dimensional flows 5.6 Numerical calculation of the largest Lyapunov exponent 5.7 Lyapunov exponent spectrum in arbitrary dimension 5.8 General characteristics of Lyapunov exponents 5.9 Kaplan Yorke (or Lyapunov) dimension 5.10 Precautions 5.11 Exercises 5.12 Computer project: Lyapunov exponent 6 Strange attractors 6.1 General properties 6.2 Examples 6.3 Search methods 6.3.1 Simplest piece wise linear chaotic flow 6.3.2 Chaotic driven van der Pol oscillator 6.4 Probability of chaos 6.4.1 Quadratic maps and flows 6.4.2 Artificial neural networks 6.5 Statistical properties 6.5.1 Attractor dimension 6.5.2 Lyapunov exponent 6.5.3 Routes to chaos 6.6 Visualization methods 6.6.1 Projections onto a plane 6.6.2 Poincare sections 6.6.3 Colors and gray scales 6.6.4 Illumination and shadows 6.6.5 Anaglyphs 6.6.6 Stereo pairs 6.6.7 Animations 6.7 Unstable periodic orbits

xii Contents 6.8 Basins of attraction 6.8.1 Henon map 6.8.2 Lozi map 6.8.3 Tinkerbell map 6.8.4 Julia sets 6.8.5 Buffing's two-well oscillator 6.9 Structural stability and robustness 6.10 Aesthetics 6.10.1 Aesthetic evaluation 6.10.2 Computer art 6.10.3 Symmetries 6.11 Exercises 6.12 Computer project: Henon map 7 Bifurcations 7.1 Bifurcations in one-dimensional lows 7.1.1 Fold 7.1.2 Transcritical 7.1.3 Pitchfork 7.2 Hopf bifurcation 7.3 Bifurcations in one-dimensional maps 7.3.1 Fold 7.3.2 Flip 7.3.3 Transcritical 7.3.4 Pitchfork 7.4 Neimark-Sacker bifurcation 7.5 Homoclinic and heteroclinic bifurcations 7.5.1 Autonomous Buffing's oscillator 7.5.2 Rossler and Lorenz at tractors 7.5.3 Driven Buffing's oscillator 7.6 Crises 7.6.1 Boundary crisis 7.6.2 Interior crisis 7.6.3 Attractor merging crisis 7.7 Exercises 7.8 Computer project: Poincare sections 8 Hamiltonian chaos 8.1 Mass on a spring 8.2 Hamilton's equations 8.3 Properties of Hamiltonian systems 8.4 Simple pendulum 8.5 Driven pendulum 8.6 Other driven nonlinear oscillators 8.7 Henon-Heiles system 8.8 Three-dimensional conservative flows

Contents xiii 8.8.1 Nose-Hoover oscillator 8.8.2 Labyrinth chaos 8.8.3 Conservative jerk systems 8.9 Symplectic maps 8.9.1 Henon area-preserving quadratic: map 8.9.2 Arnold's cat map 8.9.3 Gingerbreadman map 8.9.4 Chaotic web maps 8.9.5 Chirikov (standard) map 8.9.6 Lorenz three-dimensional chaotic map 8.10 KAM theory 8.11 Exercises 8.12 Computer project: Chirikov map 9 Time-series properties 9.1 Hierarchy of dynamical behaviors 9.2 Examples of experimental time series 9.3 Practical considerations 9.4 Conventional linear methods 9.4.1 Stationarity 9.4.2 Probability distribution 9.4.3 Detrending 9.4.4 Fourier analysis 9.4.5 Autocorrelation function 9.4.6 Hurst exponent 9.4.7 Bonification 9.5 Case study 9.5.1 Colored noise 9.5.2 Gaussian white noise 9.5.3 Gaussian chaotic time series 9.5.4 Conventional linear analysis 9.5.5 Surrogate data 9.5.6 Return maps 9.6 Time-delay embeddings 9.6.1 Whitney's embedding theorem 9.6.2 Takens' delay embedding theorem 9.6.3 Henon map example 9.7 Summary of important dimensions 9.8 Exercises 9.9 Computer project: Autocorrelation function 10 Nonlinear prediction and noise reduction 10.1 Linear predictors 10.1.1 Autoregressive models 10*1.2 Pure sine wave example 10.1.3 Noisy sine wave example

xiv Contents 10.1.4 Henon map example 10.2 State-space prediction 10.2.1 Henon map example 10.2.2 State-space averaging 10.2.3 Noisy Henon map example 10.2.4 Temperature data example 10.3 Noise reduction 10.3.1 Linear methods 10.3.2 State-space averaging 10.3.3 Noisy Henon map example 10.4 Lyapunov exponents from experimental data 10.4.1 Henon map example 10.4.2 Improvements 10.5 False nearest neighbors 10.5.1 Henon map example 10.5.2 Recurrence plots 10.5.3 Space^time separation plots 10.5.4 Fast neighbor search 10.6 Principal component analysis 10.7 Artificial neural network predictors 10.7.1 Multi-dimensional Newton^Raphson 10.7.2 Simulated annealing 10.7.3 Henon map example 10.7.4 Deterministic 1// noise 10.8 Exercises 10.9 Computer project; Nonlinear prediction 11 Fractals 11.1 Cantor sets 11.2 Fractal curves 11.2.1 Devil's staircase 11.2.2 Hilbert curve 11.2.3 Von Koch snowflake 11.2.4 Julia set 11.2.5 Weierstrass function 11.3 Fractal trees 11.3.1 Snowflake 11.3.2 Dendrite 11.3.3 Stick trees 11.3.4 Lindenmayer systems 11.4 Fractal gaskets 11.4.1 Sierpinski carpet 11.4.2 Sierpinski triangle 11.4.3 Cantor square 11.4.4 Flat Fournier universe

Contents xv 11.5 11J Fractal sponges Random fractals 11.6.1 11.6.2 11.6.3 11.6.4 11.6.5 Random Cantor sets Random fractal curves Random fractal gaskets Fractional Brownian motion Diffusion-limited aggregation landscapes 11.7 Fractal 11.7.1 Fractal forests 11.7.2 Fractal craters 11.7.3 Fractal terrain 11.7.4 Fractal oceans 11.7.5 Plasma clouds 11.8 11.9 Natura1 fractals Exercises 1L10 Computer project: State-space reconstruction 12 Calculation of the fractal dimension 12.1 Similarity dimension 12.2 Capacity dimension 12.3 Correlation dimension 12.4 Entropy 12.5 BDS statistic 12.6 Minimum mutual information 12.7 Practical considerations 12.7.1 Calculation speed 12.7.2 Required number of data points 12.7.3 Required precision of the data 12.7.4 Noisy data 12.7.5 Multivariate data 12.7.6 Filtered data 12.7.7 Missing data 12.7.8 Nonuniformly sampled data 12.7.9 Nonstationary data 12.8 Fractal dimension of graphic images 12.9 Exercises 12.10 Computer project: Correlation dimension 13 Fractal measure and multifraetals 13.1 Convergence of the correlation dimension 13.1.1 Logistic map 13.1.2 General one-dimensional maps 13.1.3 One-dimensional maps in higher embeddings 13.1.4 Decoupled one-dimensional maps 13.1.5 Two-dimensional maps 13.1.6 Chaotic flows

xvi Contents 13.2 Multifractals 13.2.1 Sinai map 13.2.2 Generalized dimensions 13.2.3 Information dimension 13.2.4 Multifractal properties 13.3 Examples of generalized dimensions 13.3.1 Asymmetric Cantor set 13.3.2 General symmetric map 13.4 Numerical calculation of generalized dimensions 13.4.1 Logistic map with A = 4 13.4.2 Logistic map with A = AQQ 13.5 Singularity spectrum 13.6 Generalized entropies 13.7 Unbounded strange attractors 13.7.1 Spence map 13.7.2 Burke-Shaw at tractor 13.8 Summary of time-series analysis methods 13.9 Exercises 13.10 Computer project: Iterated function systems 14 Nonchaotic fractal sets 14.1 The chaos game 14.2 Affine transformations 14.3 Iterated function systems 14.3.1 Examples 14.3.2 Aesthetics 14.3.3 IFS dumpiness test 14.4 Julia sets 14.5 The Mandelbrot set 14.6 Generalized Julia sets 14.7 Basins of Newton's method 14.8 Computational considerations 14.9 Exercises 14.10 Computer project: Mandelbrot and Julia sets 15 Spatiotemporal chaos and complexity 15.1 Cellular automata 15.1.1 One-dimensional example 15.1.2 Game of Life 15.1.3 Extensions 15.1.4 Self-organization 15.2 Self-organized criticality 15.2.1 Sand piles 15.2.2 Power-law spectra 15.3 The Ising model 15.4 Percolation

Contents X ii 15.5 Coupled lattices 15.5.1 Artificial neural networks 15.5.2 Coupled map lattices 15.5.3 Coupled flow lattices 15.6 Infinite-dimensional systems 15.6.1 Delay differential equations 15.6.2 Partial differential equations 15.6.3 Navier^Stokes equation 15.6.4 Boldrighini-Francheschini equations 15.6.5 Burgers' equation 15.6.6 Korteweg-de Vries equation 15.6.7 Kuramoto-Sivashinsky equation 15.7 Measures of complexity 15.8 Summary of spatiotemporal models 15.9 Concluding remarks 15.10 Exercises 15.11 Computer project: Spatiotemporal chaos and complexity Common chaotic systems A.I Noninvertible maps A. 1.1 Logistic map A. 1.2 Sine map A.1.3 Tent map A. 1.4 Linear congruential generator A. 1.5 Cubic map A.1.6 Ricker's population model A. 1.7 Gauss map A. 1.8 Cusp map A. 1.9 Gaussian white chaotic map A. 1.10 Pinchers map A. 1.11 Spence map A. 1.12 Sine-circle map A.2 Dissipative maps A.2.1 Henon map A.2.2 Lozi map A.2.3 Delayed logistic map A. 2.4 Tinker bell map A.2.5 Burgers 5 map A.2.6 Holmes cubic map A.2.7 Kaplan^ Yorke map A.2.8 Dissipative standard map A.2.9 Ikeda map A.2.10 Sinai map A.2.11 Discrete predator-prey map 398 398 399 400 401 402 403 403 404 404 406 409 410 412 413 413 416

xviii Contents A.3 Conservative maps 425 A.3.1 Chirikov (standard) map 425 A.3.2 Henon area-preserving quadratic map 426 A.3.3 Arnold's cat map 426 A.3.4 Gingerbreadman map 426 A.3.5 Chaotic web map 427 A.3.6 Lorenz three-dimensional chaotic map 427 A.4 Driven dissipative flows 428 A.4.1 Damped driven pendulum 428 A.4.2 Driven van der Pol oscillator 428 A.4.3 Shaw^van der Pol oscillator 428 A.4.4 Forced Brusselator 429 A.4.5 Ueda oscillator 429 A.4.6 Duffing's two-well oscillator 429 A.4.7 Duffing-van der Pol oscillator 430 A.4.8 Rayleigh-Duffing oscillator 430 A.5 Autonomous dissipative flows 431 A.5.1 Lorenz attractor 431 A.5.2 Rossler attractor 431 A.5.3 Diffusionless Lorenz attractor 431 A.5.4 Complex butterfly 432 A.5.5 Chen's system 432 A.5.6 Hadley circulation 433 A.5.7 ACT attractor 433 A.5.8 Rabinovich-Fabrikant attractor 433 A.5.9 Linear feedback rigid body motion system 434 A.5.10 Chua's circuit 434 A.5.11 Moore-Spiegel oscillator 435 A.5.12 Thomas' cyclically symmetric attractor 435 A.5.13 Halvorsen's cyclically symmetric attractor 435 A.5.14 Burke-Shaw attractor 436 A.5.15 Rucklidge attractor 436 A.5.16 WINDMI attractor 437 A.5.17 Simplest quadratic chaotic flow 437 A.5.18 Simplest cubic chaotic flow 437 A. 5.19 Simplest piece wise linear chaotic flow 438 A.5.20 Double scroll 433 A.6 Conservative flows 439 A.6.1 Driven pendulum 439 A.6.2 Simplest driven chaotic flow 439 A.6.3 Nose-Hoover oscillator 439 A.6.4 Labyrinth chaos 44Q A.6.5 Henon-Heiles system 449

Contents xix B Useful mathematical formulas 441 B.I Trigonometric relations 441 B.2 Hyperbolic functions 441 B.3 Logarithms 442 B.4 Complex numbers 442 B.5 Derivatives 443 B.6 Integrals 443 B.7 Approximations 444 B.8 Matrices and determinants 444 B.9 Roots of polynomials 445 B.9.1 Linear systems 445 B.9.2 Quadratic systems 445 B.9.3 Cubic systems 445 B.9.4 Quartic systems 445 B.9.5 Newton-Raphson method 446 B.10 Vector calculus 446 C Journals with chaos and related papers 447 Bibliography 449 Index 485