ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 12Feb15

Similar documents
4.10 The CMOS Digital Logic Inverter

MOSFET and CMOS Gate. Copy Right by Wentai Liu

CMOS Inverter (static view)

Digital Integrated Circuits

ECE 342 Solid State Devices & Circuits 4. CMOS

EEE 421 VLSI Circuits

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

THE INVERTER. Inverter

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE115C Digital Electronic Circuits Homework #3

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Chapter 11. Inverter. DC AC, Switching. Layout. Sizing PASS GATES (CHPT 10) Other Inverters. Baker Ch. 11 The Inverter. Introduction to VLSI

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

EE5311- Digital IC Design

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

DC and Transient Responses (i.e. delay) (some comments on power too!)

Lecture 12 Circuits numériques (II)

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

EE 434 Lecture 33. Logic Design

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

EE5311- Digital IC Design

Lecture 4: DC & Transient Response

Integrated Circuits & Systems

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter

EE5780 Advanced VLSI CAD

ECE 546 Lecture 10 MOS Transistors

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

VLSI Design and Simulation

Lecture 5: DC & Transient Response

ECE321 Electronics I

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The CMOS Inverter: A First Glance

VLSI Design Issues. ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

5. CMOS Gate Characteristics CS755

ECE 342 Electronic Circuits. 3. MOS Transistors

Topic 4. The CMOS Inverter

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

VLSI Design I; A. Milenkovic 1

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

EECS 141: FALL 05 MIDTERM 1

MOS Transistor Theory

VLSI Design I; A. Milenkovic 1

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Lecture 4: CMOS review & Dynamic Logic

The CMOS Inverter: A First Glance

Lecture 6: DC & Transient Response

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

Properties of CMOS Gates Snapshot

VLSI Design I; A. Milenkovic 1

Homework Assignment #3 EE 477 Spring 2017 Professor Parker , -.. = 1.8 -, 345 = 0 -

COMBINATIONAL LOGIC. Combinational Logic

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 5: DC & Transient Response

EE141Microelettronica. CMOS Logic

9/18/2008 GMU, ECE 680 Physical VLSI Design

DC & Transient Responses

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

P-MOS Device and CMOS Inverters

MOS Transistor Theory

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Digital Integrated Circuits 2nd Inverter

EE115C Digital Electronic Circuits Homework #4

The Physical Structure (NMOS)

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

CMOS Logic Gates. University of Connecticut 181

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

EE 560 MOS INVERTERS: STATIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Digital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman

ECE 6412, Spring Final Exam Page 1

Circuit A. Circuit B

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

SRAM Cell, Noise Margin, and Noise

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

CMOS Logic Gates. University of Connecticut 172

PASS-TRANSISTOR LOGIC. INEL Fall 2014

ESE 570 MOS INVERTERS DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 26Feb15

[ ] [ ] Chapter 16 Problem Solutions (a) = = = = Then 8 = 2(0.343) + V 2(0.343)

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Transcription:

ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS 1

VDD Vout Vin Ideal VTC Logic 0 = 0 V Logic 1 = VDD 0 2

VOH VDD VOL 0 o.c. Cout For DC steady-state Cout is open circuit. VDD 0 VDD VOL VT0n 3

VOH VDD max output voltage when the logic output is 1 VOL 0 min output voltage when the logic output is 0 VIL max input voltage that can be interpreted as a logic 0 VIH min input voltage that can be interpreted as a logic 1 NOTE: VIL VOL and VIH VOH VDD 4

Slope of VTC or inverter gain 5

Steady-State (Static) Output Voltage Behavior Tj = Ta + ΘP P Pstatic, Pdynamic (oc) (oc) Θ -> Thermal Resistance (oc/w) (W) PDC = Pstatic = VDD ID (Vin = VOH or VOL) V DD P static= [ I D.V in =V OL /*I D.V in =V OH /] 2 Minimum area nmos, pmos transistor layouts limited by design rules 6

Minimum Area (Unit) MOS Transistor Layouts Unit pmos Layout 281 61 31 41 41 21 51 21 31 14 1 51 21 2 Area=28 14 1 =392 1 41 21 2 Unit nmos Layout 201 61 81 31 41 21 41 21 2 2 Area=20 8 1 =160 1 21 Unit Dimensions: L nu=l pu=2 1 ; W nu =W pu =4 1 E2 = 2λ 11 Relevant Design Rules 7

VSB kn' kn' = KPn = A/V2 8

Visual Representation of the Resistive-Load Inverter NMOS driver transistor A ID = 0 C < B 9

CALCULTION OF VOH VDD Vin = 0 < VT0,n => nmos Cut-off Vout = VOH = VDD 10

CALCULTION OF VOL implies Vin = VDD 11

CALCULTION OF VIL -1 VIL @ Vin = VIL 12

CALCULTION OF VIH VIH 13

CALCULTION OF VIH CONT. 14

CALCULTION OF Vth 15

VDD 0 VT0n VDD 16

Take Limit as knrl -> -> VT0n -> VT0n V out.v in=v IL /=V DD -> VT0n 1 k n RL -> VDD - 2 V DD -> 0 V out.v in =V IH /= 3 k n RL -> 0 Vout VDD knrl -> semi-ideal VTC 0 VT0n VDD Vin 17

1 V DD P static.average/= [ I D.V in =0/* I D.V in =V DD /] 2 Vin = 0 P(Vin = 0 ) = 0 Vin = VDD Vout = VOL V DD V OL ID(Vin = 1 ) = IL = RL V DD V OL P(Vin = 1 ).=V DD RL Pstatic (average) 18

VDD Multiplying by RL 6 2.V V OL / W 2.5 0.2/ DD 30 x 10 W 2 R = = 0 L 5 0.2= R [2.5 1/0.2.0.2/ ' 2 6 ] 2 L L k n.2.v 2 DD VLT0n/V OL V OL / 30 x 10.2.5 1/0.2.0.2/ / W R L=2.05 x 105 0 L NO UNIQUE W/L, RL 19

W 5 R L =2.05 x 10 0 L Pstatic (average) [mw] V DD V DD V OL P static.average /= 2 RL 20

VOL = 0.147 V or 8.503 V? 21

Preferred Design 22

SATURATED NMOS ENHANCEMENT-LOAD INVERTER VSB,L 0 VSB,d VSB,L 23

SATURATED NMOS ENHANCEMENT-LOAD INVERTER 24

NMOS DEPLETION-LOAD INVERTER ENH& DEP LOADS REPLACED BY CMOS! 25

QUICK REVIEW Visual Representation of the NMOS Resistive-Load Inverter driver transistor A ID = 0 C < B 26

QUICK REVIEW VDD 0 VT0n VDD 27

QUICK REVIEW W 5 R L =2.05 x 10 0 L Pstatic (average) [mw] V DD V DD V OL P static.average /= 2 RL 28

=> VGSp = Vin - VDD => VDSp = Vout - VDD IDn = IDp 29

Visual Representation of the CMOS Inverter A Vout A E V OH =V DD -1 LIN LIN & OFF SAT V in+v T0n Vout = Vin - VT0n E SAT LIN LIN & V in,v DD *V T0p OFF -VT0p V OL=0 -VT0n Vout = Vin - VT0p -1 VT0n V IL V th V DD V IH VDD+VT0p Vin 30

Visual Representation of the CMOS Inverter Vout A E V OH =V DD -1 SAT & SAT -1 V th V IL SAT SAT -VT0p VT0n Vout = Vin - VT0n LIN LIN & SAT V OL=0 -VT0n Vout = Vin - VT0p LIN LIN & SAT V DD V IH VDD+VT0p Vin 31

IDn = IDp Vout = Vin - VT0p -1 Vout = Vin - VT0n V th V T0p V th V th V T0n V out = (iff λ = 0) V in -1 -VT0n V th V IL V IH V DD 32

IDn = IDp = 0 0= IDn = IDp = 0 =0 33

IDn = IDp Eq.(1) 34

(1) Eq.(1) (and set Vin = VIL) ' n ' p (-1) VIL VIL k W k W d V out. / 2.V in V T0n /=. / [2.V out V DD /*2.V in V DD V T0p / ] 2 L n 2 L p d V in d V out (-1) [ 2.V out V DD / ] d V in Eq.(2) SOLVE Eq. (1) and Eq. (2) for Vout and VIL or use simulation. 35

IDn = IDp 36

Eq.(3) Eq.(4) SOLVE Eq. (3) and Eq. (4) for Vout and VIH or use simulation. 37

IDn = IDp 38

Setting for Vin = Vth and solving for Vth Eq.(5) where k 'n.w / L/n 2n.W / L/n k R= ' = k p.w / L/ p 2 p.w / L/ p RECALL THAT 2n,2 p Usually Ln = Lp is set to min L: k 'n.w / L/n 2n W n k R= ' = k p.w / L/ p 2 p W p 39

DESIGN OF CMOS INVERTERS V T0n * V th = - 1.V DD *V T0p / kr - 1 1* kr Solving Eq.(5) for kr If Vth is Eq.(5) Eq.(5) V DD *V T0p V th k R =. / V th V T0n 2 Important design Eq. for CMOS inverter VTC. 1 ideal Vth set to V th =V th.ideal /= 2 V DD 0.5V DD *V T0p 2 2n.W / L/n k R=. /= 0.5 V DD V T0n 2 p.w / L/ p Symmetric CMOS Inverter W p 2n W n. /=. / V VT0n = -V = -VV =>=(k )symmetric =1.k=> / =1 If Vand and V = V If,th(ideal) also T0p T0 R R symetric th(ideal) T0n T0p T0 Lp 2 p Ln 40

Vth vs. 1/kR Vth (volts) 1 2p W p = k R 2n W n V th = where Ln = Lp 1/kR - 1 V T0n *.V DD *V T0p / kr 1* - 1 kr VDD = 5V; VT0n = - VT0p = 1 V 41

Symmetric CMOS inverter Vth(ideal) and VT0n = - VT0p = VT0 =>.k R /symetric =1.W / L/ p 2.52.W / L/n FROM Eq. (1) and Eq. (2) FROM Eq. (3) and Eq. (4) Symmetrical 42

DERIVE: for Symmetric CMOS Inverter Symmetric CMOS inverter: Vth = VDD/2, VT0n = - VT0p = VT0 and kr = 1 Eq.(1) Eq.(2) 1 => V IL =V out 2 V DD Substitute V out =V IL * 1 V DD, V = V and Sym-Inv Cond. into Eq.(1), i.e. in IL 2 V 2IL 2V IL V T0 *V 2T0 1.=2 V 2IL 2V IL V DD *2 V IL V T0 V IL V DD *V 2DD V T0 V DD V 2IL *V IL V DD V 2DD 4 3 2 2 V IL V DD 4 V IL V T0 = V T0 V T0 V DD * V 2DD 4 3 V IL.2 V DD 4V T0 /= V 2DD V T0 V DD V 2T0 V = 1.3V DD *2V T0 /.V DD 2V T0 / QED IL 4 8 V 2V DD T0 43

EXAMPLE: Compute the noise margins for a symmetric CMOS inverter has been designed to achieve Vth = VDD/2, where VDD = 5 V and VT0n = - VT0p = 1 V. V DD 5 2 3 2 NM H =V OH V IH =V DD. V DD V T0 /= V DD * V T0 =2.125V 8 8 8 8 0 3 2 3 2 NM L =V IL V OL=V IL = V DD * V T0 = V DD * V T0 =2.125V 8 8 8 8 RECALL (with VDD = 5 V) 1. NMH, NML > VDD/4 = 1.25 V 2. Ideal NM => NMH = NML = 2.5 V > VDD/2 44

Pstatic Pstatic = 0 45

If the inverter cell is part of a standard cell library, it will adhere to the cell layout protocols. Smaller Area Layout 46

VDD Vout > - VT0p Pstatic > 0 47