Subsurface Geology and Resource Exploration

Similar documents
Today s oil is yesterday s plankton

Reservoirs and Production

Reservoirs and Production

Hydrocarbon Processing Techniques

Sedimentary rocks. Mechanical Weathering. Weathering. Chemical weathering. Rates of weathering. Fossil Fuel Resources. Two kinds of weathering

1. Canadian Energy Use

Exploration, Drilling & Production

Lab 9: Petroleum and groundwater

Key Stage 3 - Volcano Fracking

EAS 233 Geologic Structures and Maps Winter Miscellaneous practice map exercises. 1. Fault and separation:

PTRT 1473: Exploration and Production II. Chapter 3: Exploration

Geography 3202 Unit 4 S.C.O. 4.3 & 4.5. Primary Resource Activities Offshore Oil And Gas

Outline 16: The Mesozoic World: Formation of Oil Deposits (with a side trip to the Devonian Marcellus Shale)

Geology and Natural Resources

Oil & Gas. From exploration to distribution. Week 1 V05 Origin of hydrocarbon resources part 1. Jean-Pierre Deflandre

Geoscience 001 Fall Rock Identification and Contextual Interpretation

Geology 101 Lab Worksheet: Geologic Time

Geologic Resources. Geologic Resources and Society. Geologic Resources and Society

ENVI.2030L Geologic Time

Exploring and Drilling for Oil and Gas. Prepared by Tom Sheeran

b. atomic mass H What is the density of an object with a volume of 15cm 3 and a mass of 45g?

Subsurface Mapping 1 TYPES OF SUBSURFACE MAPS:- 1.1 Structural Maps and Sections: -

STUDY GUIDE FOR MID-TERM EXAM KEY. Color, luster, cleavage, fracture, hardness, taste, smell, fluorescence, radioactivity, magnetism

MODULE PREREQUISITES FOR HYDROCARBON ACCUMULATION

GEO 105 Oil and Gas Exploration Project

MULTIPLE CHOICE QUESTIONS OIL, GAS, AND PETROCHEMICALS. The Energy and Resources Institute

sonar seismic wave basalt granite

MIDDLE DEVONIAN PLAY MICHIGAN BASIN OF ONTARIO. Duncan Hamilton

Ocean Basins, Bathymetry and Sea Levels

Topic 12: Dynamic Earth Pracatice

Frequently Asked Questions

Answers: Internal Processes and Structures (Isostasy)

Economic Geology Unconventional Energy Research

PETE/GEOS 445/645 Petroleum Geology 3 credits

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

Sedimentary Rocks, our most Valuable Rocks. Or, what you will probably find when you are outdoors exploring.

OIL AND GAS PLAYS OF THE MICHIGAN BASIN, SOUTHERN ONTARIO. Terry Carter, Consulting Geologist London, Ontario

Lower Skinner Valley Fill Sandstones: Attractive Exploration Targets on the Northeast Oklahoma Platform*

Seismic Attributes and Their Applications in Seismic Geomorphology

2003 GCSSEPM Foundation Ed Picou Fellowship Grant for Graduate Studies in the Earth Sciences Recipient

THE HOUSTON MUSEUM OF NATURAL SCIENCE ONLINE CURRICULUM WIESS ENERGY HALL 3 RD GRADE 5 TH GRADE GENEROUSLY SUPPORTED BY PWC

Exploration Significance of Unconformity Structure on Subtle Pools. 1 Vertical structure characteristics of unconformity

ROCKS OF THE LAKE CAYUGA BASIN, NEW YORK

THIS IS A NEW SPECIFICATION

Groundwater Hydrology

Tuesday 11 June 2013 Afternoon

AGENDA HIGHT LIGHT OF INDONESIA EXPLORATION ACTIVITY BACKGROUND

Lecture Outline Friday March 2 thru Wednesday March 7, 2018

Marine Science and Oceanography

Block 43B - Onshore Oman

WESTCARB Phase I Results Review

OTC OTC PP. Abstract

B.C. s Offshore Oil and Gas: a Guide to the Geology and Resources.

Ground-Water Exploration in the Worthington Area of Nobles County: Summary of Seismic Data and Recent Test Drilling Results

RAYMOND SIEVER Harvard University

Risk Analysis Methods

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin

3/8/2012. Wood chemical energy stored by plants Kinetic energy Water power Wind Fossil fuels Alternatives Solar Plant derivatives Nuclear

Fossil Fuels, Chemistry of Fuels

Example Quiz on Earthquakes

Tim Carr - West Virginia University

Topics: The Layers of the Earth and its Formation Sources of Heat Volcanos and Earthquakes Rock Cycle Rock Types Carbon Tax

Name: Date: Use the following to answer question 2.

So I have a Seismic Image, But what is in that Image?

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom

Petroleum Exploration

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Tim Carr - West Virginia University

GEOL 3700 STRUCTURE AND TECTONICS LABORATORY EXERCISE 3

Vail et al., 1977b. AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use.


Chapter 3 Natural Gas Basics

Trapping Mechanisms along North Similan and Lanta Trends, Pattani Basin, Gulf of Thailand

ES Chap 5 & 6: Rocks

Earth Revealed #1: Down to Earth Answer the following questions. Please take additional notes as you watch the program.

Rockall Plateau. OCN 201: Shelf Sediments

Angel International School - Manipay 1 st Term Examination November, 2015

Write It! Station Directions

Rock Cycle. Draw the Rock cycle on your remediation page OR use a sheet of notebook paper and staple

1. minerals - A naturally occurring substance that takes a solid Crystal form and is made of only a single (one) type of compound

Biostratigraphic and Lithostratigraphic Correlation of Sedimentary Strata in the Atlantic Coastal Plain

Monday 2 June 2014 Morning

Risk Factors in Reservoir Simulation

Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode

Small area of the ocean that is partially surrounded by land. The Ocean Basins. Three Major Oceans. Three Major Oceans. What is a SEA?

Western Kentucky CO 2 Storage Test

Chapter 6 Sedimentary and Metamorphic Rock

List the layers of the Earth and provide a short description of each layer starting with the center of the Earth.

(1) Identify 5 major principles of relative dating? For each principle, describe how you tell what is younger and what is older.

The Rock Cycle & Plate Tectonics

F794. GEOLOGY Environmental Geology ADVANCED GCE. Friday 10 June 2011 Afternoon

1. In the block diagram shown here, which is the oldest rock unit?

Dr. Kenneth B. Taylor, P.G.

Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale

Education Days Moscow Closing Session

Seismic interpretation of gas hydrate based on physical properties of sediments Summary Suitable gas hydrate occurrence environment Introduction

Hydrocarbon Volumetric Analysis Using Seismic and Borehole Data over Umoru Field, Niger Delta-Nigeria

GLY3160 / PHY3160 Introduction to Geophysics

EGAS. Ministry of Petroleum

Transcription:

LAB 11. Subsurface Geology and Resource Exploration Locating earth resources such as aluminum, copper, gold and gemstones has been an important job for geologists for a long time. This lab deals with the exploration for oil, which is important to Louisiana, the Gulf of Mexico area, and the whole economy of the modern world. Hydrocarbons are the solid, liquid or gaseous material, like crude oil (petroleum) and natural gas, that are refined for use as fuels. When sediments are deposited, they include mineral grains, rock fragments, water with chemical elements in solution as well as organic material. Under the increased pressure and temperature of burial, the organic matter included in the sediments can be transformed into oil and gas through chemical reactions. The migration and accumulation of hydrocarbons and water in a given sedimentary rock depends on several factors: Porosity is the percentage of void space (e.g. fractures or holes) in a rock body. Permeability is a measure of how easily fluids can pass through a rock body. mineral grains pore spaces Grains and pore spaces are easily seen in this microscope photograph. Impermeable rocks that impede the movement of hydrocarbons are known asconfining beds (e.g. shales), and permeable rocks that allow hydrocarbons to migrate arereservoir rocks (e.g. sandstones, limestones). "Oil and water do not mix", because the density of natural gas is less than that of oil which is less than that of water. So, the three will separate out from each other in hydrocarbon traps. shale confining bed sandstone reservoir rock

Hydrocarbon traps are the structures, stratigraphic differences or permeability and porosity contrasts (e.g. unconformities, faults and folds) that force the accumulation of hydrocarbons in high enough concentrations to be viable for extraction. The hydrocarbon accumulation is known as apool. Salt domes are large masses of salt (low density) that dome upward and deform the more dense rocks around them, creating structural traps on their margins. These are very common in the Gulf of Mexico and can be located on the seafloor by the hummocky or "bumpy" hill-like features they cause on the seafloor surface. They are also found on land (e.g. Avery Island, Louisiana). How do geologists decide where to drill for oil? Using all the available data, geologists will try to find traps and assess the possibilities of oil being there. Even if they decide oil is there, the possible amount of oil and the total cost of drilling for it and refining it must be compared to the amount of money that will be made by selling the final product. Well log data is the information that comes from previously drilled wells. Geologists have identified the rocks and fossils that come up in the "cuttings" as a well is drilled. Well A Well B Depth (feet) 500 1000 1500 2000 2500 3000 Sea Floor Notice that the geology between the wells is inferred from the well log data.

Seismic data can be used with existing well log data to interpret the geology between the wells. A source (like airguns,vibration plates or even explosives) sends sound wave energy down into the eart Receivers (called "geophones") measure the time it takes the wave energy to be reflected back off of different layers. Source Receivers The waves will travel at different speeds according to the different densities of the different layers. The resultingseismic section is like a cross section, but the vertical axis is the two-way travel time, the time it takes the waves to go from source to receiver. Avelocity model must be applied to convert the time data into depth below the surface. Then a geologist can correlate seismic "reflectors to the geology seen in well logs. Seismic section - ready to interpret! Processing of seismic data Seismic data acquisition Subsurface geology The seismic reflectors could be depositional contacts, unconformities, faults, contrasts in densities, or other features. A geologist will combine all the available data - well logs, surface data from maps, knowledge of the physical properties of different rocks, etc. to then make reasonable interpretations of what the seismic reflectors represent. With the cross section created on the seismic section, evaluations can be made of the most likely places to find petroleum.

You are a geologist with Got Gas? Oil Company (GGOC). You have an opportunity to explore for oil in the Gulf of Mexico, and you have new seismic data to interpret along with well log data. You must tell your boss, Big Earl Spindletop, where the oil is and if it is economical to recover it. In other words, if can you make money on it! Use the well logs and seismic lines to do the job! Remember with seismic data, a source has produced sound waves that propogate beneath the seafloor of the Gulf. The waves travel at different speeds through different media, and it is the density contrasts between adjacent layers that show up as discontinuities in the seismic data. Medium Seismic Wave Velocity [ft/sec] Water 4950 Sandstone 9750 Limestone 16,170 Avg. Sedimentary Rocks 11,000 Salt 15,000 Granite 16,040 Basalt 18,990 The formula for converting depth to time and vice versa in seismic data is: Z = V x T Where: Z is depth V is wave velocity T is time To convert the seismic data, which are in two-way travel time into depth below the seafloor, you must use an average velocity or velocity model that represents the geology seen in the well logs. Then you can use the well logs, which are in depth below seafloor, to determine which seismic discontinuities are caused by formation contacts, faults etc. Remember, two-way travel time is the amount of time it takes for the waves to travel from leaving the source, bounce off a subsurface discontinuity and travel back to the receivers. You must take this into account when calculating the depths. Well Logs 1. Using the well log cuttings, identify and list the rock types from each formation on the well log data sheet. 2. Determine which seismic wave velocity should be used for two-way travel time conversions.

Seismic Line 1 1. According to the well logs, how deep are the Shorty Harris and Eddie Bo wells? 2. Using the well log data from each well and conversion calculations from the seismic data velocity model, determine where the different formation contacts are in each well. Starting at those points in each well, draw the contacts out from the well location along the seismic discontinuity that intersects the well there. Make your interpretations only as far as you can follow with certainty the discontinuity in the seismic data. Be sure to label each contact so Big Earl knows what you re trying to say. 3. Based on your interpretations, what kind of geologic structure lies between the two wells? Identify it and trace it out on the seismic data, and be sure to label it. 4. The Shorty Harris well is pumping oil from the St. Louis Fm reservoir rock. The pool it is tapping is estimated to have a million barrels of oil in it. What kind of trap allowed the oil pool to form there? Seismic Line 2 1. What does the seafloor surface in the area of your seismic line look like according to your bathymetric map? Since media with relatively higher velocities than what surrounds it look like bright spots on seismic profiles, what could the large bright structure in this profile be? Draw the outline of the structure on your profile, where the sedimentary bed reflections end against it, and label it. 2. Although the Reverend Horton Heat well gets into the St. Louis Formation reservoir rock, it is not producing oil. Using the well log and seismic data, draw the contacts of the different formations as you did on the previous profile.

3. Using your contact and structure interpretations above, where should you recommend that Big Earl drill for oil, at Option 1 or Option 2? Also mark that location on your bathymetry map. How deep would the well have to be to tap the St. Louis Formation? What kind of trap might be there according to your interpretations? If the oil pool at your proposed well is as estimated to be as big as that of the Shorty Harris well (question #4 above), and oil is currently selling for $25 a barrel, how much money can be made from it? Your engineers tell you that it will cost $2500 a foot to drill a well. How much did it cost to drill the unsuccessful Reverend Horton Heat well? How much will your proposed well cost to drill? Considering the cost of drilling and the unsuccessful Reverend Horton Heat well, and assuming the oil pool in your discovery is as big as that of the Shorty Harris well, will GGOC make money on your well? If so, how much? If not, at least how many barrels of oil must be in the discovery in order for the company to make a profit at current prices? What would the price of each barrel of oil have to be just to break even?

Well Log Data (depth below seafloor in feet) Shorty Harris Eddie Bo 1000' 1000' Rev. Horton Heat 1000' 2000' 2000' 1950' 2000' 3000' 3000' 3000' 4000' 4125' 4000' 4000' 4125' 5000' 5000' 5000' 6000' 6050' 6000' 6050' 6000' 6050' 7000' 7000' 7000' 8000' 8000' 8250' 8000' 9000' 9000' 10,000' 9900' 10,000' 9900' Bourbon Formation sandstones and shale Dauphine Formation Rock Type: Carondelet Formation Decatur Formation Rock Type: St. Louis Formation Rock Type: Rock Type:

225' Y Well "Eddie Bo" Seismic Line 1 Well "Shorty Harris" X 250' 275' 275' 250' Y 250' Seismic Line 2 X Well "Rev. Horton Heat" Gulf of Mexico Block 154-G bathymetric chart 2 miles