Overview of low energy NN interaction and few nucleon systems

Similar documents
Modern Theory of Nuclear Forces

Renormalization group methods in nuclear few- and many-body problems

Lectures on Chiral Perturbation Theory

Modern Theory of Nuclear Forces

LEADING LOGARITHMS FOR THE NUCLEON MASS

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Introduction to chiral perturbation theory II Higher orders, loops, applications

arxiv:hep-ph/ v2 22 Feb 1996

Chiral Extrapolation of the Nucleon-Nucleon S-wave scattering lengths

Chiral dynamics and NN potential

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

Pion-nucleon scattering around the delta-isobar resonance

Theory toolbox. Chapter Chiral effective field theories

Charming Nuclear Physics

The Hadronic Decay Ratios of η 5π at NLO in χpt

πn scattering in relativistic BChPT revisited

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

Effective Field Theory for Cold Atoms I

Local chiral NN potentials and the structure of light nuclei

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

The NN system: why and how we iterate

Quantum Monte Carlo calculations of two neutrons in finite volume

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Lecture 3. 6 October 2016

Department of Physics, University of Idaho, Moscow, ID 83844, USA; Tel.:

Bayesian Fitting in Effective Field Theory

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

Electromagnetic and spin polarisabilities from lattice QCD

Baroion CHIRAL DYNAMICS

8 September Dear Paul...

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei

The Phases of QCD. Thomas Schaefer. North Carolina State University

Coupled-channel Bethe-Salpeter

Modern Theory of Nuclear Forces

Octet Baryon Charge Radii, Chiral Symmetry and Decuplet Intermediate States. Abstract

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model

C.A. Bertulani, Texas A&M University-Commerce

EFT Approaches to αα and Nα Systems

arxiv: v1 [nucl-th] 31 Oct 2013

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U.

Electromagnetic currents from chiral EFT

OPEN CHARM and CHARMONIUM STATES

EFT as the bridge between Lattice QCD and Nuclear Physics

CHIRAL SYMMETRY AT HIGH ENERGIES: HARD PION CHIRAL PERTURBATION THEORY

The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term

Chiral EFT for nuclear forces with Delta isobar degrees of freedom

arxiv:hep-ph/ v2 24 Sep 1996

Finite Temperature Field Theory

Light hypernuclei based on chiral and phenomenological interactions

Strongly-Coupled Signatures through WW Scattering

Baryon Electric Dipole Moments from Strong CP Violation

Quark Model. Ling-Fong Li. (Institute) Note 8 1 / 26

Nuclear Physics from Lattice Effective Field Theory

Tritium β decay in pionless EFT

Coulomb effects in pionless effective field theory

Elastic and Inelastic Pion Reactions on Few Nucleon Systems

The Phases of QCD. Thomas Schaefer. North Carolina State University

The unitary pion mass at O(p 4 ) in SU(2) ChPT

Goldstone Bosons and Chiral Symmetry Breaking in QCD

POWER COUNTING WHAT? WHERE?

Lattice Simulations with Chiral Nuclear Forces

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho

arxiv:hep-ph/ v1 27 Mar 1998

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

Effective Field Theories in Nuclear and Hadron Physics

Few Body Methods in Nuclear Physics - Lecture I

OAM Peripheral Transverse Densities from Chiral Dynamics. Carlos Granados in collaboration with Christian Weiss. QCD Evolution 2017.

Effective Field Theories for lattice QCD

EWSB by strongly-coupled dynamics: an EFT approach

Symmetry breaking: Pion as a Nambu-Goldstone boson

HLbl from a Dyson Schwinger Approach

PAPER 305 THE STANDARD MODEL

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

Soft Collinear Effective Theory: An Overview

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Z c (3900) AS A D D MOLECULE FROM POLE COUNTING RULE

Neutron matter from chiral effective field theory interactions

The chiral anomaly and the eta-prime in vacuum and at low temperatures

QCD and a Holographic Model of Hadrons

The nucleon-nucleon system in chiral effective theory

Effective Field Theory and. the Nuclear Many-Body Problem

HARD PION CHIRAL PERTURBATION THEORY

U. van Kolck. Institut de Physique Nucléaire d Orsay. and University of Arizona. Supported in part by CNRS, Université Paris Sud, and US DOE

QCD and Rescattering in Nuclear Targets Lecture 2

RG & EFT for nuclear forces

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young

Effective Field Theory

The Nuclear Force Problem: Is the Never-Ending Story Coming to an End?

Hadronic Weak Interactions

arxiv:nucl-th/ v1 18 Feb 1999

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL

Introduction to Quantum Chromodynamics (QCD)

The non-perturbative N/D method and the 1 S 0 NN partial wave

The Nucleon-Nucleon Interaction

Analyticity and crossing symmetry in the K-matrix formalism.

Chiral Nuclear Effective Field Theory

Electroweak Probes of Three-Nucleon Systems

Transcription:

1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT

Chiral effective field theory Chiral symmetry plays a major role mid 60s - 70s: current algebra Low-lying meson spectra suggest spontaneous chiral symmetry breaking, with pions acting as Goldstone bosons Massless QCD: Theoretical Paradise - exhibits explicit, global, χ-symmetry L (0) QCD = 1 4 Ga µνg µν,a + q i D q (1) L (v,a,s,p) QCD = 1 4 Ga µνg µν,a + q i D q+ qγ µ (v µ + a µ γ 5 )q q(s iγ 5 p)q () v, a, p 0, s M, L (v,a,s,p) QCD L true QCD (3)

3 promote a global symmetry, with external sources, to a local one non-trivial relations among Green functions e iz[v,a,s,p] = = Dq D q DG e i L (v,a,s,p) QCD (4) DU e i L eff (v,a,s,p,u) (5) H Leutwyler, Ann Phys 35, 165 (1994) L eff : includes all terms allowed by the relevant symmetries organization: derivative (momentum) expansion Q/Λ χ where Λ χ 4πf π πλ QCD power counting

4 Callan etal, Coleman, Wess, and Zumino (69): Effective Lagrangians χ - symmetry is spontaneously broken: SU(N f ) L SU(N f ) R }{{} G U G g R Ug L SU(N f ) V l µ = v µ a µ G gl l µ g L + ig L µ g L (6) r µ = v µ + a µ G gr l µ g R + ig R µ g R χ = B(s + ip) G g R χg L D µ (U, χ) = µ (U, χ) ir µ (U, χ) + i(u, χ)l µ (Same transformations of v, a, s, p which keeps L (v,a,s,p) QCD invariant) F L,R µν = µ (l ν,rν ) ν (l µ,rµ ) i[(l µ,rµ ), (l ν,rν )] (7)

5 Invariants: A where A g L Ag L L () π = F 4 (D µu) D µ U + U χ + χ U (8) { F } with U = 1 F π + iτ π and v, a, p 0, s M one gets L () π = 1 µπ µ π m π π + 1 F ( µπ π)( µ π π) m π 8F (π ) + O(π 3 ) (9) (non-linear σ model) Observables are independent of the parametrization of U!

6 Electroweak interactions [SU(3)] v µ eqa µ, a µ Q = 1 3 e sin θw W T +, T + = diag(, 1, 1), 0 V ud V us 0 0 0 0 0 0 (10) (D µ U) D µ U (iu r µ il µ U ) µ U + µ U ( ir µ U + iul µ ) (11)

7 L (4) π = L 1 { Dµ U(D µ U) } + L D µ U(D ν U) D µ U(D ν U) +L 3 D µ U(D µ U) D ν U(D ν U) + L 4 D µ U(D µ U) χu + Uχ +L 5 D µ U(D µ U) (χu + Uχ ) + L 6 [ χu + Uχ ] +L 7 [ χu Uχ ] + L8 Uχ Uχ + χu χu il 9 F R µνd µ U(D ν U) + F L µν(d µ U) D ν U + L 10 UF L µνu F µν R +H 1 F R µνf µν R + F L µνf µν L + H χχ (1)

8 Lagrangian expansion starts at O(q ) L (n) π vertices of O(q n ) pion propagator: O(q ) each loop: O(q 4 ) ν chiral order of a particular Feynman diagram N L number of loops, N i number of pion propagators, d number of derivatives on a particular vertex, N d number of vertices with d derivatives (13)

9 Lagrangian expansion starts at O(q ) L (n) π vertices of O(q n ) pion propagator: O(q ) each loop: O(q 4 ) ν chiral order of a particular Feynman diagram (1) (1) (1) (3) (1) () d dn d = 1 4 + 1 + 3 = 1 (3)

10 Lagrangian expansion starts at O(q ) L (n) π vertices of O(q n ) pion propagator: O(q ) each loop: O(q 4 ) ν chiral order of a particular Feynman diagram N L number of loops, N i number of pion propagators, d number of derivatives on a particular vertex, N d number of vertices with d derivatives ν = d dn d + 4N L N i = ] d dn d + 4N L [ d N d + (N L 1) = + N L + d N d(d ) (13)

11 EM form factors F φ (t) = 1 + 1 6 r φ t + (14) r π ± = 1 Lr 9(µ) F 1 3π F [ ln = 0439 ± 0008 fm (exp) ( ) m π µ + ln ( m K µ ) ] + 3 (15) L r 9 dependence on µ cancels explicit dependence in the logs fixing L r 9 at µ = m ρ determines the LO parameters of L res in χpt saturates almost all the values of the other LECs (resonance saturation) r K 0 = 1 ( ) 16π F ln mk m π = 004 ± 003 fm exp = 0054 ± 006 fm (16)

1 Baryon χpt N G hn, h = h(g L, g R, U) u G g R uh = hug L, u = U (17) Invariants: N A N where A G h A h Building blocks: u µ = iu D µ Uu, χ ± = u χu ± uχ u, f ± µν = uf L µνu ± u F R µνu (18)

13 L (1) πn = ψ(i D m)ψ + g A ψ uγ 5 ψ (19) [ ] τ π U = u = exp, u µ = i{u, µ u}, D µ = µ + Γ µ, f π Γ µ = 1 [u, µ ] i u (v µ + a µ )u i u(v µ a µ )u exercise: expanding U in the pion fields obtain the result L (1) πn = ψ(i m)ψ 1 4f π ψγ µ τ (π µ π)ψ + g A f π ψγ5 τ µ πψ + O(π 3 ) (0) LO = + +

14 Loops in Baryon χpt nucleon mass doesn t vanish in the χ-limit introduces another (large) scale on the theory the power counting is not transparent considering the baryon infinitely heavy (HB-χPT) restores the power counting alternative: infrared regularization - keeps the covariant aspect of the theory power counting: ν = 1 + N L + d N π d (d )+ d N N d (d 1)

15 nucleons or more nucleons: χpt power counting is different from expected! p1 p1 + q = d 4 k (π) 4 1 k m π 1 (k q) m π 1 (p 1 +k) m N 1 (p k) m N k p p k q q = d 3 k dk 0 (π) 3 π 1 k 0 ω 1 1 (p (1) 0 +k 0) σ 1 (k 0 q 0 ) ω 1 (p () 0 k 0) σ (1) ω 1 = k + m π, ω = ( k q) + m π, σ 1 = ( p 1 + k) + m N, σ = ( p k) + m N poles: ±ω 1, ±ω, p (1) 0 + σ 1, p (1) 0 σ 1, p () 0 + σ, p () 0 σ

16 nucleons k 0 poles: ±ω 1, ±ω, p (1) 0 + σ 1, p (1) 0 σ 1, p () 0 + σ, p () 0 σ

17 Weinberg (90, 91): (and more) nucleons non-perturbative problem solution: χpt power counting rules applied to the potential, and solve the scattering with a LS equation T = V + V G T T = V + V T Ordoñez, Ray, van Kolck (9-96) - potential up to O(q ) 0-present: NN potential up to O(q 4 ) DR Entem, R Machleidt, PRC 66, 01400 RH, MR Robilotta, PRC 68, 04004, + CA Rocha, PRC 69, 034009 E Epelbaum, W Glöckle, U-G Meißner, NPA 747, 36

18 + + + + (a) (b) (c) (d) (e) (f) + + + + (g) (h) (i) (j) p p p p + + + + + (k) (l) (m) (n) p p (o)

19 5 0 1 F 3 4 3 F 10 Phase Shift (deg) 4 Phase Shift (deg) 3 1 Phase Shift (deg) 8 6 4 ε 3 6 0 50 100 150 00 50 300 E LAB (MeV) 0 0 50 100 150 00 50 300 E LAB (MeV) 0 0 50 100 150 00 50 300 E LAB (MeV) 0 3 F 3 5 3 F 4 4 Phase Shift (deg) Phase Shift (deg) 3 4 1 6 0 50 100 150 00 50 300 E LAB (MeV) 0 0 50 100 150 00 50 300 E LAB (MeV)

0 5 1 G 4 0 3 G 3 0 ε 4 Phase Shift (deg) 15 1 05 Phase Shift (deg) 4 Phase Shift (deg) 05 1 15 0 0 50 100 150 00 50 300 E LAB (MeV) 10 6 0 50 100 150 00 50 300 E LAB (MeV) 05 0 50 100 150 00 50 300 E LAB (MeV) 3 G 4 3 G 5 8 0 Phase Shift (deg) 6 4 Phase Shift (deg) 05 1 0 0 50 100 150 00 50 300 E LAB (MeV) 0 50 100 150 00 50 300 E LAB (MeV)

1 0 1 H 5 06 3 H 4 3 H 5 Phase Shift (deg) 05 1 Phase Shift (deg) 04 0 Phase Shift (deg) 0 05 15 0 50 100 150 00 50 300 E LAB (MeV) 0 0 50 100 150 00 50 300 E LAB (MeV) 1 0 50 100 150 00 50 300 E LAB (MeV) 3 H 5 04 3 H 6 Phase Shift (deg) 0 05 Phase Shift (deg) 03 0 1 01 0 50 100 150 00 50 300 E LAB (MeV) 0 0 50 100 150 00 50 300 E LAB (MeV)

V cont = V (0) cont + V () cont + V (4) cont, V (0) cont = C S + C T σ (1) σ (), V () cont = C 1 q +C z +(C 3 q +C 4 z )(σ (1) σ () )+ic 5 1 (σ(1) + σ () ) (q z) V (4) +C 6 (q σ (1) )(q σ () )+C 7 (z σ (1) )(z σ () ), cont = D 1 q 4 +D z 4 +D 3 q z +D 4 (q z) ( + D 5 q 4 +D 6 z 4 +D 7 q z +D 8 (q z) ) (σ (1) σ () ) +i (D 9 q +D 10 z ) σ (1) +σ () ( (q z)+ D 11 q +D 1 z ) (σ (1) q)(σ () q) + (D 13 q +D 14 z ) ( ) (σ (1) z)(σ () z)+d 15 σ (q z) σ () (q z) with q = p p and z = (p + p )/ ()

3 π EFT very low energies : m π Λ T = 4π 1 m N k cot δ ik k cot δ = 1 a + Λ n=0 r n ( k Λ (3) ) n+1 (ERE) (4) ( ) L = N i 0 + N m N { +(µ/) 4 D ( C 0 N N ) C + [(NN) N ( ] } ) N +hc + (5) 8 ( ) ( ) + ( ), (6)

4 tree graphs: C 0 = i(µ/) 4 D ( C 0 ) = i(µ/) 4 D C 0, (7) C = i(µ/) 4 D C { [ ( ik) ( ik) (ik) + (ik) ] 8 + [( ik ) ( ik ) (ik ) + (ik ) ]} = i(µ/) 4 D C ( ) k + k = i(µ/) 4 D C k (8) it tree = i(µ/) 4 D C 0 i(µ/) 4 D C k + = i(µ/) 4 D C n k n (9) n=0

5 loops: (E/ ; k ) ( E/+q 0 ; k+ q) C i C j q (E/ ; k) (E/ q 0; k q) = = [ i(µ/) 4 D C i ][ i(µ/) 4 D C j ] d D 1 q dq 0 (π) D 1 π (k + q)i+j is F (E/ + q 0 ; k + q) is F (E/ q 0 ; k q) [ ][ ] i(µ/) 4 D C i i(µ/) 4 D d D 1 q dq 0 C j (π) D 1 π qi+j is F (E/ + q 0 ; q) is F (E/ q 0 ; q) = i(µ/) 4 D C i C j I i+j (30)

6 d I n = i(µ/) 4 D D 1 q dq 0 (π) D 1 π [ q n i E/ + q 0 q /m N + iɛ q n ] [ ] i E/ q 0 q /m N + iɛ d = (µ/) 4 D D 1 q (π) D 1 E q /m N + iɛ ( ) 3 D (µ/) = m N (m N E) n ( m N E iɛ) (D 3)/ 4 D Γ ( mn ) = i k n+1 4π (4π) (D 1)/ (31)

7 + + = it loops = i(µ/) 4 D l,m C l C m I l+m i(µ/) 4 D l,m,n C l C m C n I l+m I m+n + = i(µ/) 4 D { l,m + l,m,n C l C m ( i m N 4π k ) k l+m } ( C l C m C n i m ) N 4π k k l+m+n + (3) T = T tree + T loops = n C nk n 1 + i m N 4π k n C (33) n nk

8 the natural case Scales : M lo, M hi, variables: k, a, r n a, r n 1/Λ C n 4π m N 1 M n+1 hi (34) C 0 I 0 C 0 m N 4π Q Q M hi (35) loops: suppressed at least by Q/M hi higher order contact terms: suppressed by (Q/M hi )

9 T = C 0 } {{ } T (0) + C 0 C 0 } {{ } T (1) + + C 0 C 0 C 0 + } {{ } T () C 0 C 0 C 0 C 0 C } {{ } T (3) + C 0 C + } {{ } T (3) C C 0 (36)

30 T ERE = 4π a + i 4π a k + 4π m N m N + T EF T = C 0 +i m N + [ a m N [ 4π m N a 5 + 6π m N r 0 a 4 [ ( mn [ (mn 4π C 0 k+ 4π ) 4 C 5 0 + 3 4π ( mn 4π a ar 0 π m N r 0a 3 ) C 3 0 C ] k +i m N ] k + i 4π a [ a r 0 a 3] k 3 m N π ] Λ r 1 a k 4 +, (37) m N [ ( mn ) ] C C0 k 3 4π 4π C 0 ) ] C C0 C 4 k 4 +, (38) C 0 = 4π m N a, C = C 0 ar 0, C 4 = C C 0 + C 0 Λ ar 1 (39) a, r n 1/Λ 1/M hi consistent with C n 1/M n+1 hi

31 the unnatural case new scale : 1/a ℵ M lo, higher order contact interactions still suppressed, C n 4π m N 1 ℵ(ℵM hi ) n (40) C (n+1) k (n+1) C n k n k ℵΛ Q M hi (41) loops: C n I n kn+1 ℵ(ℵΛ) n ( Q M hi ) n (4) loops with C 0 only are not suppressed have to be resummed to all orders!

3 LO: bubble sum with C 0 vertices NLO: tree graph with C, T ( 1) = plus bubble diagrams with all C 0 vertices but one with C exercise: obtain the above result C 0 1 + ik m N 4π C 0 (43) T (0) C k = [ ] (44) 1 + ik m N 4π C 0

33 ( 1) T = C 0 + C 0 C 0 + C 0 C 0 C 0 + (45) (0) T = C C ( 1) + T ( 1) + T C T ( 1) C ( 1) (46) T

34 [ T ERE = 4π ik 1 + 1 m N }{{ a} r 0k }{{} O(ℵ) O(ℵ /M hi ) = 4π m N [ 1 + (1/a + ik) }{{} T ( 1) k 4 + 1 r 1 }{{ Λ + } O(ℵ 4 /M hi 3 ) r 0 k (1/a + ik) }{{ + } T (0) ] 1 r0k 4 4(1/a + ik) }{{ 3 + } T (1) ] r 1 k 4 Λ (1/a + ik) }{{ + } T ()

35 Summary χpt for mesons: most successful application of EFT ideas χpt for baryons: slight complication due to the baryon mass (doesn t vanish in the χ-limit) but can still be treated perturbatively χeft for nuclear systems: χpt rules applied to the potential (non-perturbative problem: LS equation) π EFT: much simpler theory, 1st step towards χeft